代码随想录算法训练营day10-栈与队列part1

用栈和队列解决算法问题思路

 用栈实现队列

原题链接:用栈实现队列

思路:栈的特点是先进后出,将先后顺序反转,如果再反转一次就是正序。将一个栈内元素,全部移到另一个栈中,就可以做到先进先出了。要注意的是,将元素移动的时机,一定是用于输出的栈元素为空。

class MyQueue {
public:
    stack<int> input;
    stack<int> output;
    MyQueue() {
        
    }
    
    void tran(){
        while(!input.empty()){
            int temp = input.top();
            input.pop();
            output.push(temp);
        }
    }
    
    void push(int x) {
        input.push(x);
    }
    
    int pop() {
        if(output.empty()){
           tran();
        }
        int res = output.top();
        output.pop();
        return res;
    }
    
    int peek() {
        if(output.empty()) tran();
        return output.top();
    }
    
    bool empty() {
        return input.size()+output.size() == 0;
    }
};

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue* obj = new MyQueue();
 * obj->push(x);
 * int param_2 = obj->pop();
 * int param_3 = obj->peek();
 * bool param_4 = obj->empty();
 */

用队列实现栈

原题链接:用队列实现栈

思路:由于队列是先进先出,想要弹出最后一个数字,必须将前面全部出列。因此,每次弹出最后一个数字时,可以将size-1个元素出列,在重新入列,这样队列前端的数字为要处理的数字。

class MyStack {
public:
    queue<int> q;
    MyStack() {
        
    }
    
    void push(int x) {
        q.push(x);
    }
    
    int pop() {
        int size = q.size()-1;
        if(size != -1)
        {
            while(size--){
                int x = q.front();
                q.pop();
                q.push(x);
            }   
        }
        int res = q.front();
        q.pop();
        return res;
    }
    
    int top() {
        int size = q.size()-1;
        if(size != -1)
        {
            while(size--){
                int x = q.front();
                q.pop();
                q.push(x);
            }
            
        }
        int res = q.front();
        q.pop();
        q.push(res);
        return res;
    }
    
    bool empty() {
        return q.empty();
    }
};

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack* obj = new MyStack();
 * obj->push(x);
 * int param_2 = obj->pop();
 * int param_3 = obj->top();
 * bool param_4 = obj->empty();
 */

 有效的括号

原题链接:有效的括号

思路:可以发现,"()[]{}"每对都是成对出现且相邻的,我们只需要将左侧存储,当右侧出现时,和左侧最后一个比较。我们需要取左侧最后一个元素,即后入先出,可以使用栈。

class Solution {
public:
    bool isValid(string s) {
        if(s.size()%2 != 0) return false;

        stack<char>st;
        unordered_map<char,char>m;
        m.insert({')','('});
        m.insert({']','['});
        m.insert({'}','{'});

        for(auto i : s){
            if(i=='(' || i=='[' || i=='{'){
                st.push(i);
            }else{
                if(st.empty() || m[i]!= st.top()){
                    return false;
                }
                st.pop();
            }
        }

        return st.empty();
    }
};

删除字符串中所有相邻重复项

原题链接:删除字符串中的所有相邻重复项

思路:直接按题目意思,容易想到遍历数组,如果它和前一个相同,则删除二者。这样做复杂度太高,在这之上增加一个bool数组,表示该元素是否被删除,这样做可以,但是很麻烦,特别是移动下标时,需要移动到bool为false为止。我们可以使用栈结构,每次入栈时,可以判断栈顶元素是否和入栈元素相同,相同则pop,且不入栈,最后结果输入反转一下即可。

class Solution {
public:
    string removeDuplicates(string s) {
        stack<char>st;

        for(auto i : s){
            if(!st.empty() && st.top()==i){
                st.pop();
            }else{
                st.push(i);
            }
        }
        string rs;
        while(!st.empty()){
            rs+=st.top();
            st.pop();
        }
        
        reverse(rs.begin(),rs.end());
        return rs;
    }
};

### 代码随想录算法训练营 Day20 学习内容作业 #### 动态规划专题深入探讨 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法[^1]。 #### 主要学习内容 - **背包问题系列** - 背包问题是典型的动态规划应用场景之一。这类题目通常涉及给定容量的背包以及一系列具有不同价值和重量的物品,目标是在不超过总容量的情况下最大化所选物品的价值。 - **状态转移方程构建技巧** - 构建合适的状态转移方程对于解决动态规划问题是至关重要的。这涉及到定义好dp数组(或表格),并找到从前一个状态到下一个状态之间的关系表达式[^2]。 - **优化空间复杂度方法** - 对于某些特定类型的DP问题,可以采用滚动数组等方式来减少所需的空间开销,从而提高程序效率[^3]。 #### 实战练习题解析 ##### 题目:零钱兑换 (Coin Change) 描述:给定不同面额的硬币 coins 和一个总金额 amount。编写函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 `-1`。 解决方案: ```python def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float('inf'): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[-1] if dp[-1] != float('inf') else -1 ``` 此段代码实现了基于自底向上的迭代方式解决问题,其中 `dp[i]` 表示达到金额 `i` 所需最小数量的硬币数目[^4]。 ##### 题目:完全平方数 (Perfect Squares) 描述:给出正整数 n ,找出若干个不同的 完全平方数 (比如 1, 4, 9 ...)使得它们的和等于n 。问至少需要几个这样的完全平方数? 解答思路同上一题类似,只是这里的“硬币”变成了各个可能的完全平方数值。 ```python import math def numSquares(n): square_nums = set([i*i for i in range(int(math.sqrt(n))+1)]) dp = [float('inf')] *(n+1) dp[0] = 0 for i in range(1,n+1): for sq in square_nums: if i>=sq: dp[i]=min(dp[i],dp[i-sq]+1); return dp[n]; ``` 这段代码同样运用了动态规划的思想去寻找最优解路径,并利用集合存储所有小于等于输入值的最大平方根内的平方数作为候选集[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值