声明:
本博客是本人在学习《计算机网络》后整理的笔记,旨在方便复习和回顾,并非用作商业用途。
本博客已标明出处,如有侵权请告知,马上删除。
3.1 使用点对点信道的数据链路层
3.1.1 数据链路和帧
- 链路 (link) 是一条无源的点到点的物理线路段,中间没有任何其他的交换结点。
- 数据链路 (data link) 除了物理线路外,还必须有通信协议来控制这些数据的传输。若把实现这些协议的硬件和软件加到链路上,就构成了数据链路。
- 现在最常用的方法是使用适配器(即网卡)来实现这些协议的硬件和软件。
- 一般的适配器都包括了数据链路层和物理层这两层的功能。
- 也有人采用另外的术语。这就是把链路分为物理链路和逻辑链路。
- 物理链路就是上面所说的链路。
- 逻辑链路就是上面的数据链路,是物理链路加上必要的通信协议。
数据链路层传送的是帧
常常在两个对等的数据链路层之间画出一个数字管道,而在这条数字管道上传输的数据单位是帧。
3.1.2 三个基本问题
数据链路层协议有许多种,但有三个基本问题则是共同的。这三个基本问题是:
- 封装成帧
- 透明传输
- 差错控制
3.1.2.1 封装成帧
- 封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。
- 首部和尾部的一个重要作用就是进行帧定界。
用控制字符进行帧定界的方法举例
- 当数据是由可打印的 ASCII 码组成的文本文件时,帧定界可以使用特殊的帧定界符。
- 控制字符 SOH (Start Of Header) 放在一帧的最前面,表示帧的首部开始。另一个控制字符 EOT (End Of Transmission) 表示帧的结束。
3.1.2.2 透明传输
透明传输的概念
透明传输:无论发送什么样的比特组合的数据,这些数据都能够按照原样没有差错地通过这个数据链路层。
透明传输问题
如果数据中的某个字节的二进制代码恰好和 SOH 或 EOT 一样,数据链路层就会错误地“找到帧的边界”。
解决透明传输问题
- 解决方法:字节填充 (byte stuffing) 或字符填充 (character stuffing)。
- 发送端的数据链路层在数据中出现控制字符 “SOH” 或 “EOT” 的前面插入一个转义字符 “ESC” (其十六进制编码是1B)。
- 接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。
- 如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。
3.1.2.3 差错检测
在传输过程中可能会产生比特差错:1 可能会变成 0, 而 0 也可能变成 1。
- 在一段时间内,传输错误的比特占所传输比特总数的比率称为误码率 BER (Bit Error Rate)。
- 误码率与信噪比有很大的关系。
- 为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用各种差错检测措施。
- 在数据链路层传送的帧中,广泛使用了循环冗余检验 CRC 的检错技术。
循环冗余检验的原理
- 在发送端,先把数据划分为组。假定每组 k 个比特。
- 在每组 M 后面再添加供差错检测用的 n 位冗余码,然后一起发送出去。
冗余码的计算
- 用二进制的模 2 运算进行 2^n 乘 M 的运算,这相当于在 M 后面添加 n 个 0。
- 得到的 (k + n) 位的数除以事先选定好的长度为 (n + 1) 位的除数 P,得出商是 Q 而余数是 R,余数 R 比除数 P 少 1 位,即 R 是 n 位。
- 将余数 R 作为冗余码拼接在数据 M 后面,一起发送出去。
冗余码的计算举例
- 现在 k = 6, M = 101001。
- 设 n = 3, 除数 P = 1101,
- 被除数是 (2^n)*M = 101001000。
- 模 2 运算的结果是:商 Q = 110101,余数 R = 001。
- 把余数 R 作为冗余码添加在数据 M 的后面发送出去。发送的数据是:(2^n)*M + R,即:101001001,共 (k + n) 位。
帧检验序列 FCS
- 在数据后面添加上的冗余码称为帧检验序列 FCS (Frame Check Sequence)。
- 循环冗余检验 CRC 和帧检验序列 FCS 并不等同。
- CRC 是一种常用的检错方法,而 FCS 是添加在数据后面的冗余码。
- FCS 可以用 CRC 这种方法得出,但 CRC 并非用来获得 FCS 的唯一方法。
接收端对收到的每一帧进行 CRC 检验
- 若得出的余数 R = 0,则判定这个帧没有差错,就接受 (accept)。
- 若余数 R ≠ 0,则判定这个帧有差错,就丢弃。
- 但这种检测方法并不能确定究竟是哪一个或哪几个比特出现了差错。
- 只要经过严格的挑选,并使用位数足够多的除数 P,那么出现检测不到的差错的概率就很小很小。
注意
- 仅用循环冗余检验 CRC 差错检测技术只能做到无差错接受 (accept)。
- 单纯使用 CRC 差错检测技术不能实现 “无差