light oj 1033 - Generating Palindromes (LCS)

1033 - Generating Palindromes
Time Limit: 2 second(s)Memory Limit: 32 MB

By definition palindrome is a string which is not changed when reversed. "MADAM" is a nice example of palindrome. It is an easy job to test whether a given string is a palindrome or not. But it may not be so easy to generate a palindrome.

Here we will make a palindrome generator which will take an input string and return a palindrome. You can easily verify that for a string of length n, no more than (n - 1) characters are required to make it a palindrome. Consider "abcd" and its palindrome "abcdcba" or "abc" and its palindrome"abcba". But life is not so easy for programmers!! We always want optimal cost. And you have to find the minimum number of characters required to make a given string to a palindrome if you are only allowed to insert characters at any position of the string.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case contains a string of lowercase letters denoting the string for which we want to generate a palindrome. You may safely assume that the length of the string will be positive and no more than 100.

Output

For each case, print the case number and the minimum number of characters required to make string to a palindrome.

Sample Input

Output for Sample Input

6

abcd

aaaa

abc

aab

abababaabababa

pqrsabcdpqrs

Case 1: 3

Case 2: 0

Case 3: 2

Case 4: 1

Case 5: 0

Case 6: 9

 

问最少在任意位置再加入多少个字符,可以成为回文字符串
总长-dp求出与相反字符串的LCS
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int dp[110][110];
int main()
{
    int n,len,kcase=1;
    char str[110],s[110];
    scanf("%d",&n);
    while(n--)
    {        
        scanf("%s",str+1);
        len=strlen(str+1);
        int u=1;
        for(int i=len;i>=1;i--)
            s[u++]=str[i];
        for(int i=0;i<=len;i++)
            dp[i][0]=0;
        for(int j=0;j<=len;j++)
            dp[0][j]=0;
        for(int i=1;i<=len;i++)
        {
            for(int j=1;j<=len;j++)
            {
                if(str[i]==s[j])
                    dp[i][j]=dp[i-1][j-1]+1;
                else
                    dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
            }
        }
        int ans=len-dp[len][len];
        printf("Case %d: %d\n",kcase++,ans);
    }
    return 0;
}
只能说基础不牢,继续做吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值