题目链接POJ NO.2386
解题思路:
这个也是一个dfs 的应用,在书上的例子,因为书上的代码并不全,基本都是函数分块来写,通过这个题目也规范了代码,以后能用函数的就都用函数
来实现吧。采用深度优先搜索
,从任意的w开始,不断把邻接的部分用'.'代替
,1次DFS后与初始这个w连接的所有w就全都被替换成'.',因此直到图中不再存在W为止,总共进行DFS的次数
就是答案。8个
方向对应8个状态转移,每个格子作为DFS的参数最多调用一次,因此时间复杂度为O(8nm)=O(nm)。
AC 代码:
#include <iostream>
#include<cstdio>
using namespace std;
#define maxn 105
char field[maxn][maxn];//园子
int n, m;
void dfs(int x, int y)
{ //将现在所在位置替换为.
field[x][y] = '.';
//循环遍历八个方向
for (int dx = -1; dx <= 1; dx++)
{//向x方向一定dx,向y方向移动dy,移动结果为(nx,ny)
for (int dy = -1; dy <= 1; dy++)
{
int nx = x + dx, ny = y + dy;//x,y 都是原来的坐标
//判断(nx,ny)是否在园子里,以及是否有积水
if (0 <= nx&&nx<n && 0 <= ny&&ny<m&&field[nx][ny] == 'W')
{
dfs(nx, ny);
}
}
}
}
void solve()
{
int res = 0;
for (int i = 0; i<n; i++)
{
for (int j = 0; j<m; j++)
{
if (field[i][j] == 'W')
{
//从有积水的地方开始深搜
dfs(i, j);
res++;
}
}
}
printf("%d\n", res);
}
int main()
{
scanf("%d%d", &n, &m);//n是行,m是列
for (int i = 0; i<n; i++) //仅仅是一个二维数组的输入
{
for (int j = 0; j<m; j++)
{
cin >> field[i][j];
}
}
solve();//这样写很好,函数分块
return 0;
}
通过这个题目进一步加深了对dfs算法的理解,最重要的是以后可以很好的还原书上的代码(开心),只要用一个main 函数把基本的输入格式弄好就好了,自己还是很弱啊,继续加油吧