[渝粤题库]西北工业大学高等数学(上)

这篇博客主要涵盖了西北工业大学高等数学(上)的习题解答,包括极限、无穷小量、函数的性质、单调性、极值、拐点、切线斜率、积分、函数的定义域及其相关概念的深入探讨。通过一系列的题目,解析了如等价无穷小、等价无穷大量、单调性判断、函数连续性、凹凸性、切线方程、平面图形面积、旋转体体积以及各类定积分的计算方法。
摘要由CSDN通过智能技术生成

高等数学(上)
当时,与比较是( 非等价的同阶无穷小量 ).
当时,与等价的无穷小量是( ).
10、当x→0时,下面无穷小量中与x等价的无穷小量为( sin x ).

8.当时,函数与是等价无穷小量,则( 2 ).

8.当时,与2比较是( 非等阶的同阶无穷小量 ).

21.函数在内( 单调减少 ).

22.函数在( ).内单调减少.

函数的拐点是( ).
26.函数在( ).取极小值.

函数 在x = 0处连续,则k =( -1 ).
20.函数在( )内单调增加.

函数在( )取极小值.
函数的拐点是( ).
函数的定义域是( (-5, 2 ) )

3、函数y=ln(x-1)的反函数是( .y=ex+1 ).
7、函数在处极限存在是在处连续的( 必要不充分条件 ).
25、函数的单调递减区间为( ).
26、函数的拐点是( ).

24.函数在( )内单调增加.
26.函数的拐点是( ).
27.函数在( )取极大值.
32.函数满足拉格朗日中值定理条件的区间是( ).
1.函数是( 奇函数 ).
函数的其铅直渐近线是( ).

25.函数的拐点是( ).
3.函数y=在(0,+)内是( 有界函数 ).
1.函数的定义域为(

2.函数y=ln在(0,1)内( 是无界的 ).

经过且切线斜率为的曲线方程是( ).

极限等于( 0 ).
22、极限( ).
抛物线与直线所围成的图形面积等于( 18 )
49.曲线轴所围图形分别绕轴旋转一周而成的旋转体体积等于( ).
曲线在点处的切线的斜率( 1 ).
曲线在点处的切线方程是( ).
曲线在上是( 凹的 ).
曲线处的切线及所围图形绕轴旋转而成的旋转体体积等于( ).
49.曲线及直线,与轴所围平面图形的面积是( 2  ).
49.曲线,,()以及轴所围图形的面积为( ).
50.曲线所围图形绕轴旋转而成的旋转体体积等于( ).
曲线的铅直渐近线是( ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wx_yuyueshool

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值