# Distinct Values

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3285    Accepted Submission(s): 1064

Problem Description

Chiaki has an array of n positive integers. You are told some facts about the array: for every two elements ai and aj in the subarray al..r (l≤i<j≤r), ai≠aj holds.
Chiaki would like to find a lexicographically minimal array which meets the facts.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers n and m (1≤n,m≤105) -- the length of the array and the number of facts. Each of the next m lines contains two integers li and ri (1≤li≤ri≤n).

It is guaranteed that neither the sum of all n nor the sum of all m exceeds 106.

Output

For each test case, output n integers denoting the lexicographically minimal array. Integers should be separated by a single space, and no extra spaces are allowed at the end of lines.

Sample Input

3

2 1

1 2

4 2

1 2

3 4

5 2

1 3

2 4

Sample Output

1 2

1 2 1 2

1 2 3 1 1

1，构造出的数字尽量小，比如第一组样例答案是数字12，只能使用1 ~ 9；

2，题目给出一些区间，要求这个区间内的数字不能重复

O（n）扫过去答案就出来了。

【rep什么的真好用】

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())

const int N = 100100;

int main (){
int T;
scanf("%d",&T);
int m,n;
int pre[N];
int ret[N];
int l,r;
while(T--){
scanf("%d %d",&n,&m);
for(int i = 0;i <= n;i++) pre[i] = i;
for(int i = 0;i < m;i++){
scanf("%d %d",&l,&r);
pre[r] = min(pre[r],l);
}
//        cout << endl;
//        rep(i,1,n + 1) cout << i << " " << pre[i] << endl;
per(i,1,n) pre[i] = min (pre[i],pre[i + 1]);
//        cout  << endl;
//        rep(i,1,n + 1) cout << i << " " << pre[i] << endl;

int pl = 1;
set<int> val;
rep(i,1,n + 1) val.insert(i); // 填充set
rep(i,1,n + 1){
while(pl < pre[i]){ // pl为上一次回收到的位置
//                cout << "pl : " << pl << " ret[pl] : " << ret[pl] << endl;
val.insert(ret[pl]);
pl++;
} // 回收可用数字
ret[i] = *val.begin(); // 当前位置永远从set中提取最小的答案
val.erase(ret[i]);
}
rep(i,1,n+1) printf("%d%c",ret[i]," \n"[i==n]);
}
}