二叉树节点间的最大距离问题

本文介绍了如何计算二叉树中任意两个节点间的最大距离。通过先序遍历和递归计算每个节点的最大深度,找到树中最大距离的方法。代码使用Java实现,包括计算节点最大距离的`nodeMaxDistance`方法和遍历整棵树得到最大距离的`treeMaxDistance`方法。
摘要由CSDN通过智能技术生成

import java.util.Stack;

// 我的思想路是,无论这个距离有多长,由于是二叉树,最大距离必产生在该树的某一个节点上
// 对所有节点的左右子树计算后,相加再加一,找出最大值

public class Finder{
    
    public static Stack<Node> stack = new Stack<>();
    
    
    // 递归的方式计算该节点的最大深度
    public static int deeps(Node root) {
        if(root == null) {
            return 0;
        }
        
        if(root.left == null && root.right == null) {
            return 1;
        }
        
        else if(root.left == null && root.right != null) {
            return deeps(root.right) + 1;
        }
        
        else if(root.left != null && root.right == null) {
            return deeps(root.left) + 1;
        }
        
        else {
            return deeps(root.left) > deeps(root.right) ? 
                    deeps(root.left) + 1: deeps(root.right) + 1;
        }
        
    }
    
    
    // 分别计算该节点的左右深度后,相加,再加入自己这个节点
    public static int nodeMaxDistance(Node node) {
        int leftMax = deeps(node.left);
        int rightMax = deeps(node.right);
        return leftMax+rightMax+1;
    }
    
    
    // 先序遍历访问所有节点,计算出距离的最大值
    public static int treeMaxDistance(Node root) {
        int max = 0;
        Node pointer = root;
        while(!stack.isEmpty() || pointer != null) {
            if(pointer != null) {
                int temp = nodeMaxDistance(pointer);
                if(temp > max)
                    max = temp;
                if(pointer.right != null)
                    stack.push(pointer.right);
                pointer = pointer.left;
            }
            
            else {
                pointer = stack.pop();
            }
        }
        return max;
    }
    
    public static void main(String[] args) {
        Node root = new Node(new Node(null, null), new Node(null, null));
        root.left.left = new Node(null, new Node(null, null));
        System.out.println(Finder.treeMaxDistance(root));
    }
    
}


class Node{
    Node left;
    Node right;
    public Node(Node left, Node right) {
        this.left = left;
        this.right = right;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值