题目大意是这样的:
已知一个数组,其中某一个数出现的频率超过整个数组大小的一半,求出这个数(要求时间O(n) )
主要思路:
一般的思路是先排个序,然后统计出各个数出现的频率。排序的时间复杂度是O(n*lgn),统计的时间复杂度是O(n)。总时间复杂度是O(n * lgn + n)(如果利用定理排好序的数组的中间那个一定是这个数,则总时间复杂度是O(n * lgn))。不满足题目要求。
其实解决此问题的一个思路就是减小问题规模,我们不难发现,如果出现两个不一样的数,我们把它们删掉整个问题规模减少了,问题本身没有变,那个出现最多的数在缩小后的数组的出现频率还是超过一半。接下来的问题就是如何解决这个删除问题,这里有个技巧:我们可以在遍历数组过程中假设一个”候选者“,在遍历数组过程中,统计“候选者”出现的次数,如果遇到“候选者”与数组下一个数相同,候“选者频”率加1,如果新出现的数不同,则频率减1。如果候选者的出现频率等于0,则选新的“候选者”。由于所求数大于数组数目一半,所以遍历数组后,幸存的“候选者”一定就是所求的数。
下面是C++实现代码:
template<class Type,class numType = int>
Type findX(Type *array,numType num) {
Type candidate;
numType count = 0;
for (numType i = 0; i < num; ++i) {
if (0 == count) {
candidate = array[i];
count++;
} else {
if (candidate == array[i]) {
count++;
} else {
count--;
}
}
}
return candidate;
}
路漫漫其修远兮,吾将上下而…