2.概率论基本概念
概念
PDF (probability density function)
概率密度函数简称PDF,这里指的是一维连续随机变量,多维连续变量也类似。随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。
密度函数f(x) 具有下列性质:
CDF(cumulative distribution function)
CDF又名累计分布函数,用如下的例子说明:
条件概率
全概率公式
贝叶斯公式
贝叶斯公式的推导过程
频率学派和贝叶斯学派
举个现实点的例子,比如预测明天4月2号的气温,频率派可能抓取历史N年的4月2日的气温数据(为了稳定,可能也会4月2日前后一周的气温数据),然后得到均值和方差,然后得到一个温度范围及其置信度。贝叶斯学派可能根据之前的先验知识(地理位置,经济状况,政策……)估计到一个先验温度分布,然后根据当前这些因素的采样数据,用相似度去修正先验概率,得到一个修正后的后验概率分布。
二项分布
均匀分布
泊松分布
正态分布
指数分布
几何分布
总结
补充说明
Gamma分布在后续章节会有所涉及。