bobkent的专栏

从事云计算基础平台研发

概率论基本概念

2.概率论基本概念

概念

PDF (probability density function)

概率密度函数简称PDF,这里指的是一维连续随机变量,多维连续变量也类似。随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。
密度函数f(x) 具有下列性质:

CDF(cumulative distribution function)

CDF又名累计分布函数,用如下的例子说明:

条件概率


全概率公式

贝叶斯公式

贝叶斯公式的推导过程

频率学派和贝叶斯学派

举个现实点的例子,比如预测明天4月2号的气温,频率派可能抓取历史N年的4月2日的气温数据(为了稳定,可能也会4月2日前后一周的气温数据),然后得到均值和方差,然后得到一个温度范围及其置信度。贝叶斯学派可能根据之前的先验知识(地理位置,经济状况,政策……)估计到一个先验温度分布,然后根据当前这些因素的采样数据,用相似度去修正先验概率,得到一个修正后的后验概率分布。

更多内容,请参考链接

二项分布

均匀分布

泊松分布

正态分布



指数分布


几何分布

总结

补充说明

Gamma分布在后续章节会有所涉及。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bobkentblog/article/details/73951346
文章标签: pdf
个人分类: AI
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭