接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
6 2 3 1 3 5 1 4 7 2 8 12 3 8 4 4 9 12 9 10 2 1 2 8 9 10
9开始用了Floyd的算法,无奈超时,因为一开始没有往单元最短路上想,以为是数组初始化上超时,后来看了别人的博客,才发现此题可以用 Dijkstra来解,把草儿的家看做一个点,到其最近的车站的费用为0(真是巧妙的想法)。这样,这个题就完完全全变成了单元最短路的问题!code:#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
#include <algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=1005;
int n;
int mp[N][N];
int dp[N],vis[N];
void Dijkstra() //单源最短路
{
int i,j;
int x,t;
memset(vis,0,sizeof(vis));
for (i=0;i<n;i++) dp[i]=mp[0][i];
vis[0]=1;
for (i=0;i<n;i++)
{
t=INF;
for (j=0;j<n;j++)
if (!vis[j]&&dp[j]<t) x=j,t=dp[x];
if (t>=INF) break;
vis[x]=1;
for (j=0;j<n;j++)
if (!vis[j])
dp[j]=min(dp[j],dp[x]+mp[j][x]);
}
}
int main(){
int T,S,D;
while (cin>>T>>S>>D)
{
int i,j;
int u,v,w;
int s,t;
n=-1;
for(i=0;i<N;i++)
for(j=0;j<N;j++)
mp[i][j]=(i==j?0:INF);
memset(mp,INF,sizeof(mp));
for(i=0;i<T;i++)
{
scanf("%d%d%d",&u,&v,&w);
n=max(n,max(u,v));
if(mp[u][v]>w)
mp[u][v]=mp[v][u]=w;
}
n++;
for (i=0;i<S;i++)
{
scanf("%d",&s);
mp[0][s]=mp[s][0]=0;
}
Dijkstra();
int ans=INF;
for (i=0;i<D;i++) //找出最小的费用即可
{
scanf("%d",&t);
ans=min(dp[t],ans);
}
printf("%d\n",ans);
}
return 0;
}