迪克斯特拉算法求单源最短路径问题(无负权值!)
这个算法用数组解决问题,每次选择一个最小的(最优的)点,然后一层一层的往外面扩张,知道全部扩张或者直到你找到了你想要的点。
注意事项:
- 初始值的问题,等下看我的代码,有详细的提示。
- 最开始只有一个点,最开始的点,给到自己给0。
- 找到目前路径非走过的点的最小权值(难懂的话,看代码有提示),把它变成最优的,并标记走过了。
这个题目有几个地方要注意下:
- 有同一个边多次赋值的情况,我们只要最小的值
- 路径是双向的,a到b,b也可以到a。
- 目的地有多个,选最近的那个
结合题目看代码好理解点:
#include<stdio.h>
#include<algorithm>
#include<string.h>
#define N 1010
#define inf 0x3f3f3f3f //比较大的值
using namespace std;
int a[N][N];//用来保存图,各个路径的关系,开始要给最大
bool vis[N];//是否走过 ,true表示走过,false没走过
int dist[N];//目前的最优路劲
int n;//用来减少循环次数的
void dif(int num)
{
dist[num]=0;//到自身的距离,给0
for(int i=1;i<n;i++)//最多这么多次一定会遍历所有的点
{
int min=inf,min2;//记录最小的值,和坐标
for(int j=1;j<=n;j++)//寻找最小的值,并记录下标
{
if(!vis[j]&&dist[j]<min)//如果没有走过,并且小于目前最小的
{
min=dist[j];
min2=j;
}
}
vis[min2]=true;//标记这个最小的已经走过了
for(int j=1;j<=n;j++)//我们把和这个点想通的路径拿出来和我们的最优路径比较,更新我们的最优路径
{
if(min+a[min2][j]<dist[j])//到这个点的值+到下个点的值是否小于目前最优路径
{
dist[j]=a[min2][j]+min;//更新
}
}
}
}
int main()
{
int t,s,d;
while(scanf("%d%d%d",&t,&s,&d)!=EOF)
{
memset(a,inf,sizeof(a));//给a都赋极大值
int x,y,time;
int max2=-10000000;//寻找最多循环的次数,就是最大的边的序号
for(int i=0;i<t;i++)
{
scanf("%d%d%d",&x,&y,&time);
int max1=x>y?x:y;
max2=max2>max1?max2:max1;
if(a[x][y]==inf)//有重边情况,要放最小的
{
a[x][y]=a[y][x]=time;
}
else
{
if(time<a[x][y])
a[x][y]=a[y][x]=time;
}
}
n=max2;
int min1=inf;
int m[N],c[N];
for(int i=0;i<s;i++)
{
scanf("%d",&m[i]);//最开始的点情况
}
for(int i=0;i<d;i++)
{
scanf("%d",&c[i]);//目的地
}
for(int i=0;i<s;i++)//依次从开始的点开始,找最小的
{
memset(vis,false,sizeof(vis));//开始都没走过
memset(dist,inf,sizeof(dist));//开始都是极大值
dif(m[i]);//处理
for(int j=0;j<d;j++)//寻找到达目的地的最短时间
{
if(dist[c[j]]<min1)
{
min1=dist[c[j]];
}
}
}
printf("%d\n",min1);
}
}
还有几个其他求最短路径的方法,适用于其他情况,比如:Floyed算法,SPFA算法。加油!