POJ 1201 Intervals

 /*
第一个差分约束系统
(1)如果采用最长路径求法,则求出来的是所有可行解组中最小的
(2)如果采用最短路径求法,则求出来的是所有可行解组中最大的
由于本题求最小值,因此采用解法2
*/
#include <iostream>
#include <queue>
#define MAX_E 50005
#define MIN_VAL -1000000
#define maxv(a, b) ((a) >= (b) ? (a) : (b))
using namespace std;

//紧接表
struct edge
{
    int from, to, w;
    edge *next;
}*head[MAX_E + 1];

void addEdge(int from, int to, int w)
{
    edge * te = new edge();
    te->from = from;
    te->to = to;
    te->w = w;

    te->next = head[from];
    head[from] = te;
}


queue<int> spfaq;
int minDist[MAX_E + 1];
bool v[MAX_E + 1];
int eNum = 0, iNum;
int maxI = INT_MIN;

void spfa()
{
    int from ,to, w;
    //memset(v, 0, sizeof(v));
    spfaq.push(0);
    v[0] = true;
    
    while(!spfaq.empty())
    {
        from = spfaq.front();
        spfaq.pop();
        v[from]  = false;
        edge * ce = head[from];
        while(ce != NULL)
        {
            to = ce->to;
            w = ce->w;
            if(minDist[from] + w > minDist[to])
            {
                minDist[to] = minDist[from] + w;
                if(!v[to])
                {
                    v[to] = true;
                    spfaq.push(to);
                }
            }
            ce = ce->next;
        }
    }
    cout<<minDist[maxI + 1]<<endl;
}

int main()
{
    int i, from, to, c;
    cin>>iNum;
    //for(i = 0; i < MAX_E; i++)
    //    head[i] = NULL;
    for(i = 0; i < iNum; i++)
    {
        //cin>>from>>to>>c;
        scanf("%d%d%d", &from, &to, &c);
        if(from > to)
        {
            int temp = from;
            from = to;
            to = temp;
        }
        maxI = maxv(maxI, to);
        //edge te = {from, to + 1, c};
        addEdge(from, to + 1, c);
    }
    for(i = 0; i <= maxI; i++)
    {
        //edge te = {i, i + 1, 0};
        addEdge(i, i + 1, 0);
        //edge tee = {i + 1, i, -1};
        addEdge(i + 1, i, -1);
        minDist[i] = MIN_VAL;
    }
    minDist[0] = 0;
    minDist[maxI + 1] = MIN_VAL;
    spfa();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值