统计学习方法c++实现之二 k近邻算法

k近邻算法

前言

k近邻算法可以说概念上很简单,即:“给定一个训练数据集,对新的输入实例,在训练数据集中找到与这个实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入分为这个类。”其中我认为距离度量最关键,但是距离度量的方法也很简单,最长用的就是欧氏距离,其他的距离度量准则实际上就是不同的向量范数,这部分我就不赘述了,毕竟这系列博客的重点是实现。代码地址:https://github.com/bBobxx/statistical-learning

kd树

k近邻算法的思想很简单,然而,再简单的概念如果碰上高维度加上海量数据,就变得很麻烦,如果按照常规思想,将每个测试样本和训练样本的距离算出来,在进行排序查找,无疑效率十分低下,这也就是为什么要介绍kd树的原因。kd树是一种二叉树,kd树的每个结点对应一个k维超矩形区域。 *kd树的k是k维空间,k近邻算法的k是k个最近值,不是一样的!*看文字很抽象,其实很好理解,看图(图片来源https://blog.csdn.net/glorydream2015/article/details/44598965)

代码结构

在这里插入图片描述

实现

kd树构建代码

每一次分割都需要确定一个轴和一个值,然后分割时只看该轴的数据,小于等于分割值就放到该结点的左子树里,大于分割值就放到右子树中。那么每个结点里面需要存储哪些内容呢?

我的实现里面,每个结点有如下内容:

struct KdtreeNode {
    vector<double> val;//n维特征
    int cls;//类别
    unsigned long axis;//分割轴
    double splitVal;//分割的值
    vector<vector<double>> leftTreeVal;//左子树的值集合
    vector<vector<double>> rightTreeVal;//右子树的值集合
    KdtreeNode* parent;//父节点
    KdtreeNode* left;//左子节点
    KdtreeNode* right;//右子节点
    KdtreeNode(): cls(0), axis(0), splitVal(0.0), parent(nullptr), left(nullptr), right(nullptr){};

};

用kd树实现的k近邻算法(还有其它的方法),训练过程实际上就是树的建造过程,我们用递归创建kd树。

首先,我们需要创建并存储根节点

KdtreeNode* root = new KdtreeNode();//类中用这个存储根节点

void Knn::setRoot() {//这是创建根节点的程序,主要是设定左右子树,还有分割轴,分割值
    if(axisVec.empty()){
        cout<<"please run createSplitAxis first."<<endl;
        throw axisVec.empty();
    }
    auto axisv = axisVec;
    auto axis = axisv.top();
    axisv.pop();
    std::sort(trainData.begin(), trainData.end(), [&axis](vector<double> &left, vector<double > &right) {
        return left[axis]<right[axis];
    });
    unsigned long mid = trainData.size()/2;
    for(unsigned long i = 0; i < trainData.size(); ++i){
        if(i!=mid){
            if (i<mid)
                root->leftTreeVal.push_back(trainData[i]);

            else
                root->rightTreeVal.push_back(trainData[i]);
        } else{
            root->val.assign(trainData[i].begin(),trainData[i].end()-1);
            root->splitVal = trainData[i][axis];
            root->axis = axis;
            root->cls = *(trainData[i].end()-1);
        }
    }
    cout<<"root node set over"<<endl;
}

上面的程序创建了根节点,但是分割轴是怎么确定?当然可以依次选轴作为分割轴,但是这里我们选择按方差从大到小的顺序选轴

stack<unsigned long> axisVec;//用栈存储分割轴,栈顶轴方差最大。


void Knn::createSplitAxis(){//axisVec创建代码
    cout<<"createSplitAxis..."<<endl;
    //the last element of trainData is gt
    vector<pair<unsigned long, double>> varianceVec;
    auto sumv = trainData[0];
    for(unsigned long i=1;i<trainData.size();++i){
        sumv = sumv + trainData[i];
    }
    auto meanv = sumv/trainData.size();
    vector<decltype(trainData[0]-meanv)> subMean;
    for(const auto& c:trainData)
        subMean.push_back(c-meanv);
    for (unsigned long i = 0; i < trainData.size(); ++i) {
        for (unsigned long j = 0; j < indim; ++j) {
            subMean[i][j] *= subMean[i][j];
        }

    }
    auto varc = subMean[0];
    for(unsigned long i=1;i<subMean.size();++i){
        varc = varc + subMean[i];
    }
    auto var = varc/subMean.size();
    for(unsigned long i=0;i<var.size()-1;++i){//here not contain the axis of gt
        varianceVec.push_back(pair<unsigned long, double>(i, var[i]));
    }
    std::sort(varianceVec.begin(), varianceVec.end(), [](pair<unsigned long, double> &left, pair<unsigned long, double> &right) {
        return left.second < right.second;
    });
    for(const auto& variance:varianceVec){
        axisVec.push(variance.first);//the maximum variance is on the top
    }
    cout<<"createSplitAxis over"<<endl;
}

现在要给根节点添加左右子树:

    root->left = buildTree(root, root->leftTreeVal, axisVec);
    root->right = buildTree(root, root->rightTreeVal, axisVec);

来看一下buildTree代码:

KdtreeNode* Knn::buildTree(KdtreeNode*root, vector<vector<double>>& data, stack<unsigned long>& axisStack) {//第一个参数是父节点,第二个参数是目前没有被分割的数据集合,第三个参数是当前的轴栈,
 //由于后面要保证左右子树的分割用的同一个轴,所以这里要传入。

    stack<unsigned long> aS;
    if(axisStack.empty())
        aS=axisVec;
    else
        aS=axisStack;
    auto node = new KdtreeNode();
    node->parent = root;

    auto axis2 = aS.top();
    aS.pop();

    std::sort(data.begin(), data.end(), [&axis2](vector<double> &left, vector<double > &right) {
        return left[axis2]<right[axis2];
    });//这里用的c++11里面的lambda函数

    unsigned long mid = data.size()/2;

    if(node->leftTreeVal.empty()&&node->rightTreeVal.empty()){
        for(unsigned long i = 0; i < data.size(); ++i){
            if(i!=mid){
                if (i<mid)
                    node->leftTreeVal.push_back(data[i]);
                else
                    node->rightTreeVal.push_back(data[i]);

            } else{
                node->val.assign(data[i].begin(),data[i].end()-1);
                node->splitVal = data[i][axis2];
                node->axis = axis2;
                node->cls = *(data[i].end()-1);
            }
        }
    }

    if(!node->leftTreeVal.empty()){
        node->left = buildTree(node, node->leftTreeVal, aS);//递归建立子树
    }
    if(!node->rightTreeVal.empty()){
        node->right = buildTree(node, node->rightTreeVal, aS);
    }

    return node;
}

建立好子树后可以通过showTree函数前序遍历树来查看,这里就不演示了,代码中有这一步。

查找K近邻

对于用kd树实现的Knn算法来说,预测的过程就是查找的过程,这里我们给出查找K个最近邻的代码,中间用到了STL标准模板库的priority_queue和pair的组合,用priority_queue实现大顶堆,对于由pair构成的priority_queue来说,默认的比较值是first,也就是说里面的元素会根据pair的第一个元素从大到小排序,即用.top()得到的是最大值(默认比较函数的情况下)。在搜索 K-近邻时,我们可以设置一个最多有 k 个元素的大顶堆,这样,在搜索时,当堆满时,只需比较当前搜索点的 dis 是否小于堆顶点的 dis,如果小于,堆顶出堆,并将当前搜索点压入,反之,则不变;当堆未满时,直接将该搜索点压入。

priority_queue<pair<double, KdtreeNode*>> maxHeap;

下面给出查找代码

void Knn::findKNearest(vector<double>& testD){
    cout<<"the test data is(the last is class) ";
    for(const auto& c:testD)
        cout<<c<<" ";
    cout<<"\nsearching "<<K<<" nearest val..."<<endl;
    stack<KdtreeNode*> path;//这是查找路径

    auto curNode = root;
    while(curNode!= nullptr){//这个循环是为了初始化查找路径
        path.push(curNode);
        if(testD[curNode->axis]<=curNode->splitVal)
            curNode = curNode->left;
        else
            curNode = curNode->right;
    }
    while(!path.empty()){
        auto curN = path.top();
        path.pop();
        vector<double> testDF(testD.begin(),testD.end()-1);
        double dis=0.0;
        dis = computeDis(testDF, curN->val);
        if(maxHeap.size()<K){
            maxHeap.push(pair<double, KdtreeNode*>(dis, curN));
        }
        else{
            if(dis<maxHeap.top().first){
                maxHeap.pop();
                maxHeap.push(pair<double, KdtreeNode*>(dis, curN));
            }
        }
        if(path.empty())
            continue;
        auto curNparent = path.top();
        KdtreeNode* curNchild;
        if(testDF[curNparent->axis]<=curNparent->splitVal)//从这里开始是为了查找同一个父节点的
            										   //另一个子树中是否有比当前K个最近邻更近的结点
            curNchild = curNparent->right;//这里和上面相反,刚好是另一个子树。
        else
            curNchild = curNparent->left;
        if(curNchild == nullptr)
            continue;
        double childDis = computeDis(testDF, curNchild->val);
        if(childDis<maxHeap.top().first){//比较另一个子树的根节点是不是比当前k个结点距离查找点更近,
            						   //如果是,将对应的子树加入搜索路径
            maxHeap.pop();
            maxHeap.push(pair<double, KdtreeNode*>(childDis, curNchild));
            while(curNchild!= nullptr){//add subtree to path
                path.push(curNchild);
                if(testD[curNchild->axis]<=curNchild->splitVal)
                    curNchild = curNchild->left;
                else
                    curNchild = curNchild->right;
            }
        }
    }

}


double Knn::computeDis(const vector<double>& v1, const vector<double>& v2){
    auto v = v1 - v2;
    double di = v*v;//这里用到了基类中的操作符重载
    return di;
}

总结

k近邻算法虽然概念简单,但是实现由于要用到树结构,编写起来还是听费事的,这里还有更好的实现,算法方面这篇讲解的也很详细我的查找代码也是通过参考这篇写的,感谢他们无私的贡献。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
K近邻算法是一种基于实例的机器学习算法,它的主要思想是通过计算样本之间的距离来确定新样本的类别。下面是一个简单的C++实现: ```c++ #include <iostream> #include <vector> #include <algorithm> #include <cmath> using namespace std; // 定义一个结构体表示样本 struct Sample { vector<double> features; // 样本的特征向量 int label; // 样本的类别 }; // 计算两个样本之间的欧几里得距离 double distance(const Sample& s1, const Sample& s2) { double sum = 0.0; for (int i = 0; i < s1.features.size(); i++) { sum += pow(s1.features[i] - s2.features[i], 2); } return sqrt(sum); } // K近邻算法 int knn(const vector<Sample>& samples, const Sample& query, int k) { // 计算所有样本与查询样本之间的距离 vector<pair<double, int>> distances; // 存储距离和样本下标的pair for (int i = 0; i < samples.size(); i++) { double d = distance(samples[i], query); distances.push_back(make_pair(d, i)); } // 按距离从小到大排序 sort(distances.begin(), distances.end()); // 统计前k个样本中出现最多的类别 vector<int> counts(k, 0); // 存储每个类别出现的次数 for (int i = 0; i < k; i++) { int label = samples[distances[i].second].label; counts[label]++; } // 返回出现次数最多的类别 int max_count = 0; int max_label = -1; for (int i = 0; i < counts.size(); i++) { if (counts[i] > max_count) { max_count = counts[i]; max_label = i; } } return max_label; } int main() { // 构造样本数据 vector<Sample> samples = { {{1.0, 2.0}, 0}, {{2.0, 1.0}, 0}, {{4.0, 5.0}, 1}, {{5.0, 4.0}, 1} }; // 构造查询样本 Sample query = {{3.0, 3.0}, -1}; // 进行K近邻分类 int k = 3; int label = knn(samples, query, k); // 输出结果 cout << "query sample belongs to class " << label << endl; return 0; } ``` 这个实现中,我们首先定义了一个`Sample`结构体表示样本,其中包含了样本的特征向量和类别。然后,我们定义了一个`distance`函数来计算两个样本之间的欧几里得距离。接着,我们实现了一个`knn`函数来进行K近邻分类,其中,我们首先计算所有样本与查询样本之间的距离,并按距离从小到大排序。然后,我们统计前k个样本中出现最多的类别,并返回出现次数最多的类别。最后,我们在`main`函数中构造了样本数据和查询样本,并调用`knn`函数进行分类。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值