机器学习在医疗咨询分类的应用

本文介绍了将机器学习应用于医疗咨询分类的过程,包括数据预处理、分词、构建文本向量、训练线性回归模型以及遇到的问题和解决方案。使用jieba进行分词,scikit-learn计算TF-IDF并训练模型,最终在测试集上获得74%的准确率。
摘要由CSDN通过智能技术生成

一 序

   真实数据非公开测试数据集,所以不能外泄。学习完线性回归模型之后,想再实际项目中应用下。

    项目背景

    咨询需要分诊的类型如给医生、护士、客服等不同人处理。目前是人工处理分类。

数据格式比较简单:分类结果,咨询内容。

二 技术方案

首先,我们需要对数据进行处理,通过中文分词将原始内容转换为文本向量。随后,使用机器学习算法对数据进行训练,得到模型后使用测试数据集进行验证。

三 分词

 试验过,如果使用默认的TFIDF模型,分词的数据不太好。

所以改用jieba分词

jieba分词,网上帖子很多了。

说下我遇到的坑。

data = pd.read_csv('data.csv',encoding='utf-8',dtype=str,header=None)

读取csv文件之后,尝

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值