读论文笔记
文章平均质量分 87
月亮299
不要在最能吃苦的年纪选择安逸。。。
展开
-
论文笔记-UNeXt: MLP-based Rapid Medical ImageSegmentation Network
论文:https://arxiv.org/abs/2203.04967代码:https://github.com/jeya-maria-jose/UNeXt-pytorch1.摘要Unet网络及其扩展近年来是领先的医学图像分割方法。但是这些网络参数多,计算复杂,速度慢,不能应用于实时的快速图像分割。本文总结:(1)提出一种基于MLP(多层感知机)的图像分割网络Unext,即卷积+MLP的结构。(2)提出一个标记MLP块(tokenized MLP block),标记和投影卷积特征。原创 2022-04-07 19:17:54 · 7571 阅读 · 45 评论 -
Backbone-VGG[ICLR2015] Very Deep Convolutional Networks for Large-Scale Image Recognition
最近决定精度一下经典CNN网络,很多都是一直用封装的又比较好所以泛读的较多。这是第一篇大名鼎鼎的VGG论文连接:https://arxiv.org/abs/1409.1556摘要主要贡献:使用(3*3)小卷积核,对网络深度的增加进行全面评估,增加网络层数到16或19层,网络表现出了一个显著的效果提升。在ImageNet2014挑战中,检测和分类任务中各自取得了第一和第二的成绩。1 引言近来卷积网络已经在大规模图片和视频识别方向上取得了很大的成功,高性能的计算体系,如GPU或大规模分布式的原创 2022-04-07 14:59:52 · 3301 阅读 · 0 评论 -
论文笔记-YOLOv4: Optimal Speed and Accuracy of Object Detection
论文地址:https://arxiv.org/pdf/2004.10934v1.pdfcode:https://github.com/AlexeyAB/darknet.摘要有大量的技巧可以提高CNN的精度。某些技巧仅在某些模型上使用或针对某些问题或小规模的数据集使用;有一些技巧例如BN,残差连接等,适用于大多数的模型,任务和数据集。我们假设这种普遍的技巧包括:Weighted-Residual-Connections (WRC),Cross-Stage-Partial-connections (原创 2022-04-02 15:50:16 · 3439 阅读 · 0 评论 -
论文笔记-Exploring Plain Vision Transformer Backbones for Object Detection
论文链接:https://arxiv.org/pdf/2203.16527.pdf这一篇论文是Facebook AI Research 的 Yanghao Li、何恺明等新作。论文思想主要是证明了将普通的、非分层的视觉 Transformer 作为主干网络进行目标检测的可行性。仅仅通过VIT的最后一层特征,通过多次反卷积来实现特征的多尺度。摘要本文探索研究了一种链式的,非层级结构的VIT作为目标检测的backbone。这种设计使得原始的VIT结构就可以fine-tuned用于目标检测,而无需重新原创 2022-04-01 17:06:52 · 3031 阅读 · 0 评论 -
论文笔记-Attention Is All You Need---NeurIPS2017
论文地址:https://arxiv.org/abs/1706.03762Abstract主要的sequence transduction 模型是基于复杂的递归或卷积神经网络,其中包括一个编码器和一个解码器。性能最好的模型也是通过一种注意机制来连接编码器和解码器。我们提出了一种新的简单的网络架构,the Transformer,完全基于注意机制,完全免除循环和卷积。在两个机器翻译任务上的实验表明,这些模型质量优越,同时更并行,需要的训练时间大大少。我们的模型在WMT2014英德翻译任务上实现了28.原创 2022-03-28 18:23:58 · 1809 阅读 · 0 评论 -
CSPNet(CrossStagePartialNetworks)
论文:原论文论文思想这篇论文主要是解决,网络计算量大的问题提出一种新的特征融合的结构,来降低计算量同时又可以保持甚至提升精度。原创 2022-02-17 10:02:01 · 2105 阅读 · 0 评论 -
论文笔记- [CVPR 2017] Look Closer to See Better:RA-CNN
Look Closer to See Better:Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition论文下载地址:https://openaccess.thecvf.com/content_cvpr_2017/papers/Fu_Look_Closer_to_CVPR_2017_paper.pdf代码连接:https://github.com/ Jianlong-Fu/Recurre原创 2021-06-17 20:04:19 · 531 阅读 · 1 评论 -
论文笔记-Image/Video Deep Anomaly Detection: A Survey
Image/Video Deep Anomaly Detection: A Survey 图像或视频中异常检测综述目录Image/Video Deep Anomaly Detection: A SurveyAbstract1 Introduction2 Problem Formulation2.1pN : Modeling Normal Data2.2D: Detection Measure3 SupervisionSupervisied(N + A).Sem..原创 2021-06-11 18:57:46 · 737 阅读 · 0 评论 -
论文翻译--MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision MLP-Mixer:一个全MLP的视觉架构Google Research, Brain Teampaper: https://arxiv.org/abs/2105.01601code: https://github.com/google-research/vision_transformer(暂未开源)摘要CNNs是CV的首选模型。最近,attention-based networks.原创 2021-06-11 16:42:36 · 756 阅读 · 1 评论 -
论文翻译--[TPAMI 2021]Deep Hough Transform For Semantic Line Detection
深度霍夫变换语义直线检测Kai Zhao∗ , Qi Han∗ , Chang-Bin Zhang, Jun Xu, Ming-Ming Cheng†, Senior Member, IEEE摘要原创 2021-06-03 15:17:47 · 2442 阅读 · 2 评论 -
[TPAMI2021]Deep Hough Transform for Semantic Line Detection读论文笔记
目录方法数据集霍夫变换算法直线参数化深度霍夫变换优点实验结果精度,准确率耗时TPAMI2021南开大学提出深度霍夫变换:语义线检测新方法主页:https://mmcheng.net/dhtline/论文:http://mftp.mmcheng.net/Papers/21PAMI-DHT-line.pdf代码:https://github.com/Hanqer/deep-hough-transform方法该论文提出“深度霍夫变换(DHT)”通过在深度原创 2021-05-27 15:43:26 · 1353 阅读 · 0 评论