?题目描述
在一个 m*n 的二维字符串数组中输出二叉树,并遵守以下规则:
行数 m 应当等于给定二叉树的高度。
列数 n 应当总是奇数。
根节点的值(以字符串格式给出)应当放在可放置的第一行正中间。根节点所在的行与列会将剩余空间划分为两部分(左下部分和右下部分)。你应该将左子树输出在左下部分,右子树输出在右下部分。左下和右下部分应当有相同的大小。即使一个子树为空而另一个非空,你不需要为空的子树输出任何东西,但仍需要为另一个子树留出足够的空间。然而,如果两个子树都为空则不需要为它们留出任何空间。
每个未使用的空间应包含一个空的字符串""。
使用相同的规则输出子树。
示例 1:
输入:
1
/
2
输出:
[["", "1", ""],
["2", "", ""]]
示例 2:
输入:
1
/ \
2 3
\
4
输出:
[["", "", "", "1", "", "", ""],
["", "2", "", "", "", "3", ""],
["", "", "4", "", "", "", ""]]
示例 3:
输入:
1
/ \
2 5
/
3
/
4
输出:
[["", "", "", "", "", "", "", "1", "", "", "", "", "", "", ""]
["", "", "", "2", "", "", "", "", "", "", "", "5", "", "", ""]
["", "3", "", "", "", "", "", "", "", "", "", "", "", "", ""]
["4", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]]
注意: 二叉树的高度在范围 [1, 10] 中。
?Method : 递归填充
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<vector<string>> printTree(TreeNode* root) {
int h = getHeight(root); //树的高度
int w = (1 << h) - 1; // 输出矩阵宽度 2^h-1
vector<vector<string>> ans(h, vector<string>(w, "")); // 输出矩阵
fill(root, ans, 0, 0, w - 1);
return ans;
}
private: // 设计两个辅助函数
//获得树的高度
int getHeight(TreeNode* root){
if (!root) { return 0; }
// 根据二叉树的定义,高度是左子树/右子树中较高,再加1
return max(getHeight(root->left), getHeight(root->right)) + 1;
}
// 对返回矩阵进行填充,因为二叉树的递归定义的,所以我们辅助函数fill,也用递归调用
void fill(TreeNode* root, vector<vector<string>> &ans, int h, int l, int r) {
if (!root) { return; } // 有点二分搜索(Binary search)
int mid = l + (r - l) / 2;
ans[h][mid] = to_string(root->val);//在C++ 11中把整型转化为 string
fill(root->left, ans, h + 1, l, mid - 1);
fill(root->right, ans, h + 1, mid + 1, r);
};
};