原题链接:https://www.acwing.com/problem/content/284/
题意解释
每次合并相邻两个数字,代价是数字之和,最后合成一个,显然最后一步是将左边一大块和右边一大块合并
区间dp模板
通常区间dp都是遍历所有区间可能长度和区间可能起点
for (int len = 1; len <= n; len++) { // 区间长度
for (int i = 1; i + len - 1 <= n; i++) { // 枚举起点
int j = i + len - 1; // 区间终点
if (len == 1) {
dp[i][j] = 初始值
continue;
}
for (int k = i; k < j; k++) { // 枚举分割点,构造状态转移方程
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);
}
}
}
c++代码
debug:
- 前缀和数组遍历i从1开始要保证i-1>=0;
- dp要求最小所以初始化为正无穷
- 遍历起点保证终点不越界
- 遍历中间分段点k要保证k + 1 >= j
- 假如结果负数一般是因为数组越界
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 310;
int f[N][N];
int s[N];
int main()
{
int n;
cin >> n;
for (int i = 1; i <= n; i ++ ){
int x;
cin >> x;
s[i] = s[i - 1] + x;
}
memset(f, 0x3f, sizeof f);
for (int len = 1; len <= n; len ++ ){
for (int i = 1; i + len - 1 <= n; i ++ ){
int j = i + len - 1;
if(len == 1){
f[i][j] = 0;
continue;
} //没有合并的可能
for (int k = i; k + 1 <= j; k ++ ){
f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + s[j] - s[i - 1]);
}
}
}
cout << f[1][n] << endl;
return 0;
}