AcWing 282. 石子合并(区间 DP 模版题详解分析)

原题链接:https://www.acwing.com/problem/content/284/

题意解释

每次合并相邻两个数字,代价是数字之和,最后合成一个,显然最后一步是将左边一大块和右边一大块合并

区间dp模板

通常区间dp都是遍历所有区间可能长度区间可能起点

for (int len = 1; len <= n; len++) {         // 区间长度
    for (int i = 1; i + len - 1 <= n; i++) { // 枚举起点
        int j = i + len - 1;                 // 区间终点
        if (len == 1) {
            dp[i][j] = 初始值
            continue;
        }

        for (int k = i; k < j; k++) {        // 枚举分割点,构造状态转移方程
            dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);
        }
    }
}

c++代码

debug:

  1. 前缀和数组遍历i从1开始要保证i-1>=0;
  2. dp要求最小所以初始化为正无穷
  3. 遍历起点保证终点不越界
  4. 遍历中间分段点k要保证k + 1 >= j
  5. 假如结果负数一般是因为数组越界 
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 310;
int f[N][N];
int s[N];

int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i ++ ){
        int x;
        cin >> x;
        s[i] = s[i - 1] + x;
    }
    memset(f, 0x3f, sizeof f);
    for (int len = 1; len <= n; len ++ ){
        for (int i = 1; i + len - 1 <= n; i ++ ){
            int j = i + len - 1;
            if(len == 1){
                f[i][j] = 0;
                continue;
            } //没有合并的可能
            for (int k = i; k + 1 <= j; k ++ ){
                f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + s[j] - s[i - 1]);
            }
        }
    }
    
    cout << f[1][n] << endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值