[图像复原](MPRNet)Multi-Stage Progressive Image Restoration

转载自:https://zhuanlan.zhihu.com/p/357876311

Multi-Stage Progressive Image Restoration 2021 cvpr

目前最强的去噪方法,没有之一。可以去看看它刷榜的战绩。

提出了一个多阶段结构,渐进式的学习复原函数。因此全面分解了回复过程,让每一步变得可操作。

模型先用编码解码结构学习情境特征,之后与一个保留局部信息的高分辨率分支融合。每一个阶段,介绍对每个像素的自适应设计,这个设计利用原像素位监督的注意力来调整局部的注意力。这样多阶段结构的一个关键因素是不同阶段的信息交换。为此,当信息不是按照顺序从前阶段交换到后阶段时,提出了个两面方法。但也设置了特征处理块间的侧连接,用来避免任何信息的缺失。这样产生紧密内部连接的多阶段结构叫MPRNet,有很好的性能提升

首先,现有的多阶段技术,要么使用编码解码器(编码阶段有效传播情境信息,但是在保留空间细节这里做的不好),要么使用single-scale pipeline[61](空间精度做的很好,但是语义信息不太行) 我们证明了在多阶段图像修复工作上,同时使用两种结构才能更有效(本文核心想法)

一.multi-stage progressive image restoration architecture,MPRNet,主要有一下几个部分:

1.前几个阶段使用了编码解码器来学习多尺度语境信息,最后阶段以图元原尺寸运行,保留细节

2.一个有监督的注意力模块(SAM),在每两个阶段连接处,实现阶段性学习。在ground truth引导下,这个模块利用先前阶段的预测来计算注意力图,然后用注意力图反过来作用到先前阶段的特征图,然后再传入下一个阶段。

3.一个交叉不同阶段特征的融合机制(CSFF,cross-stage feature fusion),用来帮助从前到后传播多尺度语境特征。此外,这个方法简化了不同阶段间的信息流,更好的优化了网络。

二.MPRNet结构

1.前两层都是基于编码解码器的子网络,可以学习较广泛的情境信息(感受野较大)。因图像复原是一个位置敏感任务(从头到尾都要求像素间的相关性),最后一阶段在原始分辨率上使用一个子网络(没有任何下采样),因此在最终输出是保留着不错的精细结构。

2.替换掉简单的多阶段结构。我们使用有监督的注意力模块,在每两个阶段间。在ground truth的监督下,模型重新缩放先前阶段特征图,然后再传入下一个阶段。

3.引入CSFF机制,

4.每一个阶段都有一条直接通往input的通道.与[68,85]类似,采取多补丁等级制度在输入图片和切分图片为互不相交的patch:阶段一4个,阶段二2个,然后第三层原始图片

5.在任何给定阶段S,取代直接预测X_s,模型预测残差R_s,初试退化图I,有:

 

正则项取去10e-3

三.各个部分构成:

1.编码解码器子网络(encoder-decoder sub):

标准U-net基础上改造得到的。首先将所有的卷积模块换成CAB注意力模块,然后将上下采样换成双线性插值加卷积(去除转置卷积的块状效应,破坏结构)

2.原始分辨率子网络(ORSNet):

为了保持输入的精细细节,引入original-resolution subnetwork(ORSNet)在最后阶段。ORSNet没有使用下采样,并且生成高分辨率的空间特征。它又多个ORBs块构成,每一个ORB都有多个通道注意力块.GAP表示全局平均池化,

3.交叉融合各极端特征(CSFF):

CSFF模块,设置在两个编码解码器之间,

编码解码器和ORSNet间

注意这里的融合过程,以编码解码器为例:每一个编码器或者解码器都有三个尺度的特征,对应尺度的特征与下一阶段的编码器的特征相加(代码中写的很详细)

CSFF的优点:首先它让网络不易收到信息缺失的影响。其次,一个阶段的多尺度特征帮助下一个阶段的特征补充。最后,它通过简化信息流网络优化进程更稳固。

4.有监督的注意力模块(SAM):

最近的图片复原多阶段网络[68,85],直接再每一阶段直接预测,然后在丢进下一个阶段。本模型在两个阶段间加了监督注意力模块(显著提升网络性能)如图

首先F_in是当前阶段输入SAM的输入,先进行就一个1*1卷积得到残差R_s,然后和退化图加和,得到复原的图片X_s(这个阶段预测的结果)。对应ground turth,我们有明确的监督信息。下一个阶段,每个像素注意力masks又预测出的X_s生成(做1*1卷积,再丢入sigmoid激活)。这个masks用来重新校准F_in(需要将F_in丢入1*1卷积).最后,注意力增强特征F_out得到,输入下一阶段。

优点有两点:首先,它在每一阶段提供了ground truth的监督。其次,在局部监督预测帮助下,生成注意力图来抑制当前阶段信息量较小的特征(通过自注意力机制计算每个特征的注意力权重?),并且只把有用的信息传递到下一阶段。

四.实验部分:

评价指标使用:PRNR 转为 RMSE .SSIM转为DSSIM

实验细节:编码解码器子网络每一个尺度使用2个CABs,为了下采样,使用步长为2的2*2最大值池化。在最后阶段,使用包含3ORBs的ORSNet,每一个ORB使用了8个CABs。网络在256*256补丁训练,batch16,迭代次数4e5.

收据增强方面,水平竖直反转随机。使用Adam优化器,学习率2e-4,使用cos退火策略渐减少到1e-6.

代码中CAB,ORB都使用了残差链接

复现的时候有很多细节需要注意,作者已经将代码开源,详细的网络架构建议查看代码。

本文给人的最大启发就是多阶段学习和SAM系统,值得学习。详细内容,欢迎讨论

 

一下附推荐学习的论文或方法,逐一学习,复现:

 

关于去雨水的模型:

Derain Net[21],

SEMI[75],

DIDMDN[86],

UMRL[80],

RESCAN[45],

PreNet[61],

MSPFN[36]。

去模糊论文:

Unnatural l0 sparse representation for natural image deblurring

Dynamic scene deblurring.

Non-uniform deblurring for shaken images.

From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur

Blind motion deblurring using conditional adversarial networks

Deep multi-scale convolutional neural network for dynamic scene deblurring

Dynamic scene deblurring using spatially variant recurrent neural networks

DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better

Scale-recurrent network for deep image deblurring

Human-aware motion deblurring.

Dynamic scene deblurring with parameter selective sharing and nested skip connections.

Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training.

Deep stacked hierarchical multi-patch network for image deblurring

Spatially-attentive patch-hierarchical network for adaptive motion deblurring

去噪论文:

Deblurring low-light images with light streaks.

Deep multi-scale convolutional neural network for dynamic scene deblurring

DeblurgGAN: Blind motion deblurring using conditional adversarial networks.

Blind image deblurring using dark channel prior.

Unnatural l0 sparse representation for natural image deblurring.

DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better

Dynamic scene deblurring using spatially variant recurrent neural networks

Scale-recurrent network for deep image deblurring.

Deep stacked hierarchical multi-patch network for image deblurring.

  • 5
    点赞
  • 78
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估中心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值