pytorch
文章平均质量分 76
等待破茧
这个作者很懒,什么都没留下…
展开
-
[图像复原](MPRNet)Multi-Stage Progressive Image Restoration
转载自:https://zhuanlan.zhihu.com/p/357876311Multi-Stage Progressive Image Restoration 2021 cvpr目前最强的去噪方法,没有之一。可以去看看它刷榜的战绩。提出了一个多阶段结构,渐进式的学习复原函数。因此全面分解了回复过程,让每一步变得可操作。模型先用编码解码结构学习情境特征,之后与一个保留局部信息的高分辨率分支融合。每一个阶段,介绍对每个像素的自适应设计,这个设计利用原像素位监督的注意力来调整局部的注意力。转载 2021-04-16 09:36:16 · 9304 阅读 · 6 评论 -
抖音图像修复背后技术——CVPR2021多阶段图像修复框架(附github源码下载)
转载自https://mp.weixin.qq.com/s/NexOBSFoYXdFoSbK3ON1cQ论文:https://arxiv.org/pdf/2102.02808.pdfGithub代码:https://github.com/swz30/MPRNet在现实生活中,难免会有老旧照片或者受损图片。在热门的抖音中也频繁出现照片修复特效,其实背后都是我们熟知的“Image Restoration”。图像恢复任务需要在恢复图像时,在空间细节和高级上下文化信息之间保持复杂的平衡。.转载 2021-04-16 09:21:48 · 1595 阅读 · 0 评论 -
MobileStyleGAN--压缩版styleGAN,合成高保真图像,参数更少、计算复杂度更低
近年来在生成图像建模中,生成对抗网络(GAN)的应用越来越多。基于样式(style-based)的 GAN 可以生成不同层次的细节,大到头部形状、小到眼睛颜色,它在高保真图像合成方面实现了 SOTA,但其生成过程的计算复杂度却非常高,难以应用于智能手机等移动设备。近日,一项专注于基于样式的生成模型的性能优化的研究引发了大家的关注。该研究分析了 StyleGAN2 中最困难的计算部分,并对生成器网络提出了更改,使得在边缘设备中部署基于样式的生成网络成为可能。该研究提出了一种名为 MobileStyl.转载 2021-04-15 17:14:56 · 670 阅读 · 0 评论 -
Resnet 介绍
转载自https://www.jianshu.com/p/93990a641066Resnet介绍终于可以说一下Resnet分类网络了,它差不多是当前应用最为广泛的CNN特征提取网络。它的提出始于2015年,作者中间有大名鼎鼎的三位人物He-Kaiming, Ren-Shaoqing, Sun-Jian。绝对是华人学者的骄傲啊。VGG网络试着探寻了一下深度学习网络的深度究竟可以深几许以能持续地提高分类准确率。我们的一般印象当中,深度学习愈是深(复杂,参数多)愈是有着更强的表达能力。凭着这一基转载 2021-03-16 17:44:33 · 1131 阅读 · 0 评论 -
Python技术交流与分享 http://www.feiguyunai.com/
Python技术交流与分享 http://www.feiguyunai.com/转载 2021-02-02 17:55:47 · 611 阅读 · 0 评论 -
Pytorch CPU --Pytorch 四种边界填充方式(Padding)
转载自 https://www.cnblogs.com/haifwu/p/12866319.html?utm_source=tuicool&utm_medium=referral1. 选用卷积之前填充(强烈建议) 小生非常推荐大家不再使用卷积所带的填充方式,虽然那种方式简单,但缺陷太多。① 不能根据自己的需要来决定上与下填充不等的边界,左右填充不等的边界;② 边界填充零容易出现伪影的情况,对实验效果影响比较大。将卷积中的Padding方式换为卷积前Padding效果会更佳,以下列了四种转载 2020-08-06 14:56:37 · 1474 阅读 · 0 评论