2024 年 25 个大数据项目 [附源代码]

原文地址:Top 25 Big Data Projects in 2024 [With Source Code] 

作者:Manish Kumar Jain 博士是一位成就卓著的作家、国际企业培训师和技术顾问,拥有 20 多年的行业经验。他专攻 ChatGPT、OpenAI、生成式 AI、即时工程、工业 4.0、Web 3.0、区块链、RPA、物联网、机器学习、数据科学、大数据、人工智能、云计算、Hadoop 和深度学习等前沿技术。凭借在金融科技、工业物联网和区块链方面的专业知识,他在金融、航空航天、零售、物流、能源、银行、电信、医疗保健、制造业、教育和石油天然气等多个领域拥有深入的知识。Jain 博士拥有深度学习和图像处理博士学位,他获得的大量认证和专业成就表明他致力于在全球范围内提供卓越的培训和咨询服务,同时始终站在技术前沿。

近年来,大数据和人工智能蓬勃发展,对这些技术的重视将推动它们走向新的高度。公司已经意识到大数据的价值,各种各样的机会正在敲开你的大门。如果你是一名大四的大数据专业学生,现在是开始从事大数据项目的理想时机。本文为您的下一个大数据项目提供了当前建议。您可以查看 最好的大数据课程 ,深入了解大数据工具和技术,为在该领域的工作做好准备。本文将提供大数据项目 示例、针对大四学生的大数据项目、 带有源代码的数据小项目 和一些 大数据示例项目。 本文还将讨论一些 使用 Hadoop 的大数据项目 和 使用 Spark 的大数据项目。 

让我们来看看一些 大数据分析项目 和带有源代码的大数据分析项目。下面列出了您不容错过的顶级大数据项目。  

大数据项目列表 [基于等级]

学以致用是必要的。从事大数据项目将使您锻炼大数据技能。项目极大地提高了测试技能的机会。此外,它们在简历上看起来也很棒。在本文中,我们将讨论一些很棒的大数据项目想法,您可以尝试这些想法来展示您在该领域的专业知识。让我们查看一些 带有源代码的大数据项目。 

初学者中级高级
利用大数据进行交通管控大数据网络安全云服务器中的异常检测
搜索引擎Crime Detection使用大数据的智慧城市
医疗保险欺诈检测根据症状预测疾病旅游者行为分析
电子商务网站的数据仓库设计推荐系统Web 服务器日志分析

 

适合初学者的大数据项目

以下是一些适合初学者的最佳大数据项目的列表:

1.利用大数据进行交通管控

许多大城市都存在交通问题,尤其是在一天中一些较繁忙的时段。如果持续检查热门路线和替代路线的交通状况,也许可以采取措施缓解某些道路的交通状况。使用大数据的实时交通模拟和预测项目有很多用途和好处。模拟实时交通已成功建模。

该项目是 Lambda Architecture 的一个项目,用于跟踪芝加哥街道的交通状况,包括拥堵和安全情况。在市区内的 1,250 个路段上,它显示当前的交通事故、闯红灯和超速摄像头违规情况以及交通趋势。

源代码: 流量控制 

2.搜索引擎

搜索引擎必须管理数万亿个网络对象并跟踪数十亿用户的在线活动,以便了解人们在搜索什么。搜索引擎将网站内容转换为定量数据。对于希望学习使用 Apache Hive 运行数据查询和分析基础知识的新手来说,这是一个有趣的 大数据 Hadoop 项目 。为了从各种 Hadoop 集成数据库和文件系统获取数据,Hive 具有类似 SQL 的界面。如果您熟悉 SQL,那么完成这个项目应该没有问题。 

源代码: 搜索引擎 

3. 医疗保险欺诈检测

医疗保险欺诈检测是一种特殊的数据科学方法,用于预测医疗保险市场的欺诈行为,该方法利用实时分析和分类算法。政府可以使用此工具来帮助患者、药房和医生,最终增强行业信任,解决医疗成本上升的问题,并减少欺诈的影响。在数据科学家和具有 AI 背景的员工的帮助下,该项目以特殊的方式使用数据分析来发现医疗保健专业人员之间的联系。

源代码: 医疗保险欺诈检测 

4. 电子商务网站的数据仓库设计

在这个大数据项目中,您将为零售机构构建数据仓库。但是,它侧重于回答有关定价优化和库存分配的设计和实施的一些具体问题。您将尝试在这个蜂巢项目中回答以下两个问题: 

  • 更昂贵的产品在某些市场上是否更常见? 
  • 是否应该重新分配库存,或者是否应该根据地点改变价格? 

源代码: 电子商务网站的数据仓库设计 

中级大数据项目

以下是一些最佳中级大数据项目的列表: 

1.大数据网络安全

这是重要的 大数据机器学习项目之一。通过从公司的任何用户那里获取登录凭据,然后进入网络,网络攻击者可以选择针对特定公司。普通防病毒软件很难检测到这种情况,因为用户凭据是真实的,并且网络攻击可能在无人知晓的情况下发生。您的用户行为建模系统将使用大数据算法构建。  

该大数据项目的主要目标是利用复杂的多变量时间序列数据来操纵当前网络安全问题中的漏洞披露趋势。该系统的机器学习和自动化引擎与异常值集成,并基于 Hadoop、Spark 和 Storm 检测可疑技术,从而实现实时检测欺诈并预防取证威胁。

源代码: 大数据网络安全 

2. 犯罪侦查

它是重要的 Apache 大数据项目之一。这项有趣的大数据研究寻找趋势来预测和识别动态犯罪网络中的联系。由于犯罪网络是一个动态的社交图,因此这项研究使用流处理技术在生成数据后立即提取相关信息。此外,它还提供了三个全新的社交网络相似性指标,用于检测和预测犯罪联系。下一阶段需要使用 Apache Flink 框架创建一个灵活的数据流分析应用程序,以便部署和评估新提出的和现有的指标。   

源代码: 犯罪侦查 

3. 根据症状预测疾病

有一句话说:“健康就是财富”。公平地说,除非一个人身体健康到足以享受世俗的快乐,否则财富就不存在。许多疾病的风险因素可能是遗传、环境或营养因素,在特定年龄组或性别中更为普遍,在各个种族或地区中更为普遍。它们也可能是环境或遗传因素。 

可以通过汇总与特定疾病(例如糖尿病、帕金森病和乳腺癌)相关的额外风险变量来计算某种疾病发作的可能性。当风险变量未知时,可以分析数据集以找出风险因素的模式,从而适当地预测发病的可能性。

源代码: 基于症状的疾病预测 

4.推荐系统

在线服务通常提供数千、数百万甚至数十亿个项目的访问,包括商品、广告、视频剪辑、电影、音乐、博客条目等。大数据通过提供大量用户数据(包括过去的购买记录、浏览历史和意见)使推荐系统能够提供准确而中肯的推荐。我们的微电影推荐系统由大数据提供支持。该项目旨在比较不同的推荐模型在 Hadoop 框架上的运作方式。

源代码: 推荐系统 

高级大数据项目 

以下列出一些高级 大数据项目: 

1. 云服务器中的异常检测

随着云计算的普及,许多人和企业都转向了云存储解决方案。这种方法的好处包括共享存储、计算和大量用户之间的透明服务。然而,对于云计算系统来说,维护复杂的大型系统以及由硬件和软件错误带来的不可避免的运行时问题是必要的。处理这种复杂的云资源的一个关键策略是自动异常检测。 

源代码: 异常检测 

2. 使用大数据的智慧城市

智慧城市是技术先进的城市中心,通过使用各种数字手段、语音激活方法和传感器收集数据。从数据中获得的知识可用于有效管理资源、服务和资产;反过来,这些数据可用于增强整个城市的运营。

源代码: 智慧城市 

3.游客行为分析

旅游业是许多人的生计来源,但其庞大的产业可能会对一个国家的经济产生负面影响。可以从决策、感知、目的地偏好和满意度的角度来审视这种行为,以确保游客和居民都有积极的体验。大数据领域中比较复杂的项目概念之一是行为分析,它类似于情绪分析。

源代码: 行为分析 

4. Web服务器日志分析

Web 服务器日志分析可用于了解整体用户体验。任何严重依赖网站提供客户服务或创造收入的企业都可以从这种处理方式中受益。 

源代码: 日志分析 

通过我们的在线数据工程师课程释放数据科学的力量。获得热门技能,将您的职业生涯推向新高度。立即报名!

更多大数据项目构想和主题

我们将探索一些带有源代码的大数据项目,您可以探索这些项目并将其纳入您的数据科学组合中。我们将介绍适合初学者、中级和高级水平的大数据项目,以便您可以选择最适合您的项目。 

1. 初学者级别

  • 面向初学者的 Hadoop 项目 - 使用 Hive 进行 SQL 分析 
  • Hive 中处理大数据集的艰难工程选择 - 第一部分 
  • 使用 Hadoop Hive 查找唯一 URL 
  • AWS 项目 - 在 AWS EMR 集群上构建 ETL 数据管道 
  • 使用 Spark 和 Hive 进行 Yelp 数据处理(第一部分) 
  • 使用 Spark 和 Hive 进行 Yelp 数据处理第 2 部分 

2. 中级

  • 使用 Spark Streaming 分析 Twitter 情绪大数据 
  • PySpark 教程 - 学习通过 Python 使用 Apache Spark 
  • Hive 中处理大数据集的艰难工程选择(第二部分) 
  • 使用 AWS ELK Stack 进行事件数据分析 

3. 高级水平

  • Build a Time Series Analysis Dashboard with Spark and Grafana 
  • 使用 Google Cloud Dataflow 通过 SQL 进行 GCP 数据提取 
  • 使用 Kafka、Spark 和 LSTM 部署自动回复 Twitter 句柄 
  • 使用 Snowflake 处理缓慢变化的维度

做大数据项目可能会遇到什么问题?

数据分析师在执行大数据项目时可能会遇到不少挑战,尤其是大数据实时项目或一些实时大数据项目。这些是:

1. 监控不足: 在处理大数据实时项目时,监控实时环境可能是一个问题,因为没有太多的解决方案可用。

2. 延迟问题: 数据虚拟化期间的输出延迟是数据分析期间面临的常见问题,因为工具需要高性能导致输出生成延迟。

3. 数据隐私: 处理数据时,需要遵守数据隐私和公司的治理政策,因为任何隐私泄露都可能对项目造成致命影响。

4. Demanding Scripts/ Tools: A Big Data analytics project might require a higher-level of scripting or the use of tools that you are not familiar with.

为什么大数据项目如此重要?

大数据项目是一种数据分析程序,其分析基于非常庞大的数据集。任何大于 1 TB 的数据集合都属于大数据。

传统数据分析方法与专门用于管理大数据计划中的大量数据的其他方法相结合。大数据工程师经常使用深度学习、机器学习和计算机视觉作为其分析过程的一部分。

由于传统技术的限制,在大数据领域发展之前,软件工程师无法真正分析大量数据。项目大数据的未来是光明的,以下是一些例子,告诉我们大数据为什么重要:

  • 在能源领域,石油和天然气公司利用大数据来追踪管道流量,公用事业公司则利用大数据来监控电网和潜在的钻井位置。
  • 制造和运输公司使用大数据来管理其供应网络并改善运输路线。
  • 其他政府应用包括灾难响应、预防犯罪和智慧城市计划。

结论

因此,本文提供了简明的 大数据项目列表 和各种与 大数据相关的项目。大数据已经非常庞大,但随着新技术的出现,如日益流行的物联网设备、无人机和可穿戴设备,大数据预计将迅速增长。您可以参加 KnowledgeHut 最好的大数据课程, 从行业专家那里学习大数据的重要概念和方面,从而开启成功的大数据职业生涯。 

常见问题 (FAQ)

1.什么是数据项目? 

数据项目是针对那些旨在提供有用信息的人而发起的计划。这可能涉及开发和撰写报告、使用机器学习模型和其他活动。

2 、 什么是大数据项目?

大数据项目是一种以非常大的数据集为基础进行分析的数据管理项目。

3.如何创建大数据项目? 

制定良好的项目计划是启动任何项目工作的第一步,也是最重要的一步。在开发大型数据项目时,应始终遵循明确的程序。 

4 、 什么样的项目比较适合用大数据?

大数据项目的目标是能够挖掘数据并对其进行分析以发现隐藏的模式。当今的数据驱动型企业使用大数据来更好地了解客户并制定企业战略,例如银行业和电子商务行业。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值