hdu 4745 Two Rabbits(带思维的DP)

Two Rabbits

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 800    Accepted Submission(s): 419


Problem Description
Long long ago, there lived two rabbits Tom and Jerry in the forest. On a sunny afternoon, they planned to play a game with some stones. There were n stones on the ground and they were arranged as a clockwise ring. That is to say, the first stone was adjacent to the second stone and the n-th stone, and the second stone is adjacent to the first stone and the third stone, and so on. The weight of the i-th stone is ai.

The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.

At the beginning, the rabbits both choose a stone and stand on it. Then at each turn, Tom should choose a stone which have not been stepped by itself and then jumped to it, and Jerry should do the same thing as Tom, but the jumping direction is anti-clockwise.

For some unknown reason, at any time , the weight of the two stones on which the two rabbits stood should be equal. Besides, any rabbit couldn't jump over a stone which have been stepped by itself. In other words, if the Tom had stood on the second stone, it cannot jump from the first stone to the third stone or from the n-the stone to the 4-th stone.

Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.

Now they want to find out the maximum turns they can play if they follow the optimal strategy.
 

Input
The input contains at most 20 test cases.
For each test cases, the first line contains a integer n denoting the number of stones.
The next line contains n integers separated by space, and the i-th integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1 <= ai <= 1000)
The input ends with n = 0.
 

Output
For each test case, print a integer denoting the maximum turns.
 

Sample Input
  
  
1 1 4 1 1 2 1 6 2 1 1 2 1 3 0
 

Sample Output
  
  
1 4 5
Hint
For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2. For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.
 

Source
 

Recommend
liuyiding   |   We have carefully selected several similar problems for you:   4846  4845  4844  4843  4842 
 

题意:

给你围成一圈的n(N<=1000)个石头的重量。顺时针给出。现在有两只选两个石头站上去。两个兔子可以站在同一块石头上。然后他们一个按顺时针一个按逆时针跳。每一步他们只能跳到重量相同的石头上(可以是同一块石头)。但自己站过的石头不能再战也不能越过。也就是最多跳一圈。现在问他们最多能进行多少步。

思路:

对于环形问题根据经验可以把序列复制两段来处理。由于一个兔子往左跳一个兔子往右跳。且它们所站的石头值要一样。不管他们初始位置如何他们所站过的石头一定会组成一个回文序列。那么问题就转化为求环形序列的最长子序列了。对于求线性序列的回文子序列很简单。

if(val[i]==val[j])

    dp[i][j]=dp[i+1][j-1]+2;

else

    dp[i][j]=max(dp[i][j-1],dp[i+1][j])。

dp[i][j]表示[i,j]这段序列所能组成回文子序列的最大长度。至于方程为什么是这样的呢?当val[i]==val[j]的时候毫无疑问第i个和第j个位置的值都能加入到最长回文子序列中。对于val[i]!=val[j]的情况。i,j至多只能选一个位置的值。如果两个都选的话就不满足回文的条件了。所以只能从dp[i][j-1](不选j可选i).dp[i+1][j](不选i可选j)两个较大的转移。对于环形的我们的方程还是不变。

有两种方法。

1.将序列复制两倍。这样按照上面线性的方程算出dp值,关键是最大的步数怎么确定。两个兔子可以站在最长序列的两端然后对着跳。这时步数就为序列的长度。这时我们枚举一只兔子的起点i.由于不能一圈另一只兔子最多站到i+n-1的位置。所以取dp[i][i+n-1]的最大值即可。还有种可能就是两只兔子站在同一块石头上。这时由兔子于站在回文序列的两端。所以起点和终点值相同.就要利用到dp[i][i+n]-1(一个点被重复计算)。

详细见代码:

#include <iostream>
#include<stdio.h>
using namespace std;
const int maxn=2010;
int arr[maxn<<1],dp[maxn][maxn];
int main()
{
    int i,j,n,m,ans;

    while(scanf("%d",&n),n)
    {
        m=2*n,ans=1;
        for(i=0;i<n;i++)
            scanf("%d",&arr[i]),arr[n+i]=arr[i];
        for(i=0;i<m;i++)
            dp[i][i]=1;
        for(i=m-1;i>=0;i--)
            for(j=i+1;j<m;j++)
                {
                    if(arr[i]==arr[j])
                        dp[i][j]=dp[i+1][j-1]+2;
                    else
                        dp[i][j]=max(dp[i][j-1],dp[i+1][j]);
                }
        for(i=0;i<n;i++)
            ans=max(ans,dp[i][i+n-1]),ans=max(ans,dp[i][i+n]-1);
        printf("%d\n",ans);
    }
    return 0;
}
方法2:

不用把序列增倍。这个正在研究。


  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值