目录
一、冷门又实用的机器学习算法
最近学习时,发现有许多冷门的机器学习算法,却超实用。例如以下的算法:
- 隔离森林(Isolation Forest):这是一种用于异常检测的算法,适用于高维数据。它通过随机切分数据空间来隔离观察结果,使得异常观察结果更容易被识别。
- 自编码器(Autoencoders):自编码器是一种用于降维或特征学习的神经网络模型,它可以将输入数据压缩到一个较小的表示空间,并从中学习到数据的有用特征。
- 深度信念网络(Deep Belief Networks):深度信念网络是一种生成式模型,通过训练多层神经网络来学习数据的内在规律和表示层次。它主要用于无监督学习,并在一些特定领域如语音识别和图像处理中取得了成功。
- RBF神经网络:RBF神经网络是一种使用径向基函数(Radial Basis Function,简称RBF)作为激活函数的人工神经网络。径向基函数网络的输出是输入的径向基函数和神经元参数的线性组合。它可以用于多种非线性函数的逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等领域。
- 谱聚类(Spectral Clustering):谱聚类是一种基于图论的聚类方法,它将数据点视为图中的顶点,并通过优化图划分准则来实现聚类。谱聚类可以处理非凸形状的聚类,并且在一些应用中取得了优于传统聚类方法的效果。
- 模拟退火算法:模拟退火算法是一种基于概率的算法,源于固体退火原理。模拟退火算法可以应用于解决优化问题,其基本步骤包括初始化、设立目标函数、重复以下步骤直到满足结束条件:产生新的解决方案、计算目标函数值、判断是否接受新的解决方案。
二、冷门算法举例
冷门算法并不意味着它们的效果不好或没有应用价值。在某些特定的问题和应用场景中,这些算法可能会表现出色并带来意想不到的效果。
2.1 RBF神经网络
例如RBF神经网络,RBF神经网络用于曲线拟合时,可以如下理解
也就是用多个径向基(高斯函数)去拟合目标数据点,有多少个数据点,就用多少个径向基去拟合,由于它是有精确解的,所以一定是能完美拟合的,还可以根据径向基的宽度来调节曲线的平滑性。多好用!
RBF径向基神经网络是什么-老饼讲解-神经网络-通俗易懂https://www.bbbdata.com/text/363
2.2 模拟退火算法
模拟退火算法跟遗传算法是类似的,是一种优化算法,但比遗传算法要简单得多。
以TSP问题为例,TSP问题,即旅行商问题(Travelling Salesman Problem),是数学领域中著名的问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。旅行推销员问题是数图论中最著名的问题之一,即“已给一个n个点的完全图,每条边都有一个长度,求总长度最短的经过每个顶点正好一次的封闭回路”。
简单编写一下模拟退火就可以得到下面的路径:
模拟退火这类的算法,可以对某个参数进行求解,并且不要求目标函数是一个连续函数,类似这样的优化问题在生活中也有许多,使用模拟退火算法,一下子就可以解决了
附:上述模拟退火求解TSP的matlab代码可参考:
老饼讲解|【代码】模拟退火-求解TSP问题https://www.bbbdata.com/text/668
写文不易,点赞收藏吧~!