kaldi的优化

1、kaldi的脚本中的decode.sh步骤都可以注释掉,减少训练的时间。decode是计算test语料的正确率。

2、lexicon.txt其实直接用dacidian就可以,不用从语料中训练。其实就是每个词的发音,没有任何其他作用

3、最耗时的步骤就是训练神经网络。如果在训练过程中断,可以修改steps/nnet3/train_dnn.py脚本从断点的iteration开始跑,不需要从头开始跑。删除已经跑过的语句,再需要修改iter和num_archives_processed,然后就可以从断点开始跑了。

4、如果识别效果不好,可能有如下的原因:语言模型中没有正确的词汇、识别的phone不对、识别的词图不对。这些步骤的结果都可以用命令检查。

5、识别的结果中有unk,那么是因为lexicon.txt没有对应的词。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值