协方差矩阵学习

因为PCA内要求特征矩阵的协方差矩阵,貌似学的数学已经交给老师了,补一下:

协方差矩阵的每个元素是各个矢量元素之间的协方差。这是从标量随机变量到高维度随机矢量的自然推广。

假设X是以n个标量随机变量组成的行矢量

X = \begin{bmatrix}X_1 \\  \vdots \\ X_n \end{bmatrix}

并且μi是其第i个元素的期望值,即, μi = E(Xi)。协方差矩阵被定义的第i,j项是如下:

\Sigma_{ij}= \mathrm{cov}(X_i, X_j) = \mathrm{E}\begin{bmatrix}(X_i - \mu_i)(X_j - \mu_j)\end{bmatrix}

即:

\Sigma=\mathrm{E}\left[ \left( \textbf{X} - \mathrm{E}[\textbf{X}] \right) \left( \textbf{X} - \mathrm{E}[\textbf{X}] \right)^\top\right]
=\begin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)]\end{bmatrix}

矩阵中的第(i,j)个元素是XiXj的协方差。这个概念是对于标量随机变量方差的一般化推广。

作用:它能导出一个变换矩阵(也就是协方差矩阵),这个矩阵能使数据完全去相关(decorrelation)。从不同的角度看,也就是说能够找出一组最佳的基以紧凑的方式来表达数据。

根据这个协方差矩阵A,计算特征值和特征向量。

但我的问题是如何这个 特征方程怎么写呢?  AX=aX;

求得所有使方程成立的a,这里的a就是所谓的本征向量;同时取得特征值;

然后把本征向量从大到小排序;

选择前m个构成投影矩阵L;

然后把源矩阵*现在的投影矩阵L = 降维后的矩阵,也就是最后PCA的结果啦!

个人学习总结,错的话请指出!哈哈



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值