修复tomcat9.0中文乱码问题

本文详细介绍了如何解决Tomcat服务器中控制台和web页面的乱码问题,通过修改配置文件和设置编码,确保中文字符的正确显示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下操作均要在tomcat关闭的情况下进行修改,如果tomcat在运行,请先关闭

1:控制台乱码

定位apache-tomcat-9.0.24\conf\logging文件,将里面的UTF-8全部改成GBK即可

 

2:web页面乱码

(1):定位apache-tomcat-9.0.24\bin\catalina文件,打开并在最上方@echo off的下面加上以下代码

set "JAVA_OPTS=%JAVA_OPTS% %JSSE_OPTS%  -Dfile.encoding=UTF-8"

 (2):定位apache-tomcat-9.0.24\conf\server文件,在下图位置加上

useBodyEncodingForURI="true" URIEncoding="UTF-8"代码即可

(3):页面清除缓存(ctrl+shift+del),重新刷新即可

Initializing Spring DispatcherServlet 'dispatcherServlet' 2023-06-09 19:57:51.583 INFO 1 --- [nio-9211-exec-3] o.s.web.servlet.DispatcherServlet : Initializing Servlet 'dispatcherServlet' 2023-06-09 19:57:51.604 INFO 1 --- [nio-9211-exec-3] o.s.web.servlet.DispatcherServlet : Completed initialization in 21 ms 2023-06-09 19:57:58.676 INFO 1 --- [nio-9211-exec-5] o.apache.coyote.http11.Http11Processor : Error parsing HTTP request header Note: further occurrences of HTTP request parsing errors will be logged at DEBUG level. java.lang.IllegalArgumentException: Invalid character found in the HTTP protocol [RTSP/1.00x0d0x0a0x0d...] at org.apache.coyote.http11.Http11InputBuffer.parseRequestLine(Http11InputBuffer.java:560) ~[tomcat-embed-core-9.0.37.jar!/:9.0.37] at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:260) ~[tomcat-embed-core-9.0.37.jar!/:9.0.37] at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:65) [tomcat-embed-core-9.0.37.jar!/:9.0.37] at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:868) [tomcat-embed-core-9.0.37.jar!/:9.0.37] at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1589) [tomcat-embed-core-9.0.37.jar!/:9.0.37] at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49) [tomcat-embed-core-9.0.37.jar!/:9.0.37] at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [na:1.8.0_312] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [na:1.8.0_312] at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) [tomcat-embed-core-9.0.37.jar!/:9.0.37] at java.lang.Thread.run(Thread.java:748) [na:1.8.0_312]
06-11
### H20 算力优化及性能指标分析 #### INT8 和 FP16 的性能提升 英伟达H20在INT8和FP16精度下的表现尤为突出,其设计旨在最大化推理效率并降低延迟。相比前代产品,H20通过架构改进实现了更高的吞吐量,在INT8模式下提供了显著增强的TOPS(Tera Operations Per Second),而在FP16模式下则提升了TFLOPS(Tera Floating-point Operations Per Second)。这种优化使得H20成为机器学习模型部署的理想选择[^2]。 #### FLOPS 性能对比 就FLOPS而言,H20相较于前一代GPU有明显进步。具体来说,它不仅提高了单精度浮点运算能力(FP32),还大幅增强了混合精度计算的支持力度,这对于需要高精度与高效能平衡的应用场景尤为重要。此外,借助Tensor Core的新特性,H20能够在特定工作负载中实现更高倍率的速度增益。 #### 功耗管理与 TDP 设计 功耗方面,尽管H20拥有更强悍的处理能力和更大的晶体管数量,但由于采用了先进的制程技术和高效的电源管理系统,整体能耗得到了有效控制。对于GB300、B300以及HGX平台上的配置版本,各自的热设计功率(TDP)均经过精心调整以适应不同的应用场景需求。例如,在数据中心环境中运行时,即使面对极高负荷的任务也能保持稳定而持久的表现。 #### 前代产品的比较 当我们将目光投向前几代NVIDIA GPU时可以发现,无论是从原始算力还是实际应用效能来看,H20都树立了一个新的标杆。特别是在针对AI训练和推理任务进行了专门调优之后,无论是在每瓦特性能还是单位面积内的计算密度上都有所突破。这表明相对于早期型号如V100或A100等,新一代硬件已经迈入了一个全新阶段——即更加注重可持续发展的同时追求极致性能。 ```python # 示例代码展示如何查询 NVIDIA GPU 的基本规格信息 (伪代码) import nvidia_smi nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) info = nvidia_smi.nvmlDeviceGetPowerUsage(handle) print(f"Current Power Usage: {info / 1000} W") ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值