基于redis的缓存机制的思考和优化

相对我们对于redis的使用场景都已经想当的熟悉。对于大量的数据,为了缓解接口(数据库)的压力,我们对查询的结果做了缓存的策略。一开始我们的思路是这样的。

1.执行查询

2.缓存中存在数据 -> 查询缓存 

3.缓存中不存在数据 -> 查询实时接口


对此,我简单模拟了我们的缓存机制 。

这是一个查询实时的服务

package yyf.Jedis.toolsByRedis.cacheCacheTools;
/**
* 模拟服务
* @author
*
*/
public class BaseService {
public String query(String req) {
return "hello:" + req;
}
}


从代码中我们可以看到,这个服务反应应该是非常快的。
  1. package yyf.Jedis.toolsByRedis.cacheCacheTools;
    import redis.clients.jedis.Jedis;
    import redis.clients.jedis.JedisPool;
    import redis.clients.jedis.JedisPoolConfig;
    public class CacheCacheToolTest {
    static JedisPool jedisPool;
    static {
    JedisPoolConfig config = new JedisPoolConfig();
    config.setMaxTotal(100);
    config.setMaxIdle(5);
    config.setMaxWaitMillis(1000);
    config.setTestOnBorrow(false);
    jedisPool = new JedisPool(config, "127.0.0.1", 6379, 1000);
    Jedis jedis = jedisPool.getResource();
    jedisPool.returnResource(jedis);
    }
    public static void main(String[] args) {
    for (int i = 0; i < 5; i++) {
    new Thread(){@Override
    public void run() {
    //执行查询
    query();
    }}.start();
    }
    }
    public static void query() {
    BaseService bs = new BaseService();
    Jedis jedis = jedisPool.getResource();
    String req = "test123";
    String res;
    if (jedis.get(req) == null) {
    System.out.println("##查询接口服务");
    res = bs.query(req);
    jedis.setex(req, 10, res);
    } else {
    System.out.println("##查询缓存");
    res = jedis.get(req);
    }
    System.out.println(res);
    jedisPool.returnResource(jedis);
    }
    }


当5个并发进来的时候,第一个查询实时服务,其余的查询缓存。

  1. ##查询接口服务
  2. hello:test123
  3. ##查询缓存
  4. ##查询缓存
  5. ##查询缓存
  6. hello:test123
  7. hello:test123
  8. hello:test123
  9. ##查询缓存
  10. hello:test123

看到结果,我们似乎觉得这个查询非常的合理,当时当我们的实时接口查询速度很慢的时候,就暴露出问题来了。
  1. package yyf.Jedis.toolsByRedis.cacheCacheTools;
    /**
    * 模拟服务
    * @author
    *
    */
    public class BaseService {
    public String query(String req) {
    try {
    Thread.sleep(1000);
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    return "hello:" + req;
    }
    }




  1. ##查询接口服务
  2. ##查询接口服务
  3. ##查询接口服务
  4. ##查询接口服务
  5. ##查询接口服务
  6. hello:test123
  7. hello:test123
  8. hello:test123
  9. hello:test123
  10. hello:test123
结果是,全部都查询的接口服务。这样会导致并发一高,缓存就相当于作用非常小了。


如果在查询实时过程时,对于相同的请求,能够让其等待,那么效率会有大大的提升:(为了模拟,加锁处理)

  1. public static void main(String[] args) {
    beginTime = System.currentTimeMillis();
    for (int i = 0; i < 5; i++) {
    new Thread(){@Override
    public void run() {
    //执行查询
    synchronized (args) {
    query();
    }
    //System.out.println(System.currentTimeMillis()-beginTime);
    }}.start();
    }
    }
    


  1. ##查询缓存
  2. hello:test123
  3. ##查询缓存
  4. hello:test123
  5. ##查询缓存
  6. hello:test123
  7. ##查询缓存
  8. hello:test123
  9. ##查询缓存
  10. hello:test123

现在就都是查询缓存了。其实对于查询并发这样做是比好的。打个比方:

一堆人需要从一个出口出去,这个出口有一个小门已经可以通过,还有一个大门未打开,需要从小门出去打开。这个大门非常大(redis查询速度非常快)。如果大批的人同时出去(高并发),那么必然在小门挤很长的时间。此时,如果现有一个人去把大门先打开,那么后面的人(包括本来要挤小门的人)可以直接从大门出去,效率肯定是后面的划算。


对于查询实时一次比较慢的情况下,可以先让一个线程进去。让其它线程等待。


当然,这样并不完美。当缓存失效,那么查询就会卡顿一下。为了保证用户能一直流畅的查询,我有如下两种方案:

1.在缓存存在的时间里的进行异步查询去更新缓存。

2.使用二级缓存,并且当一级缓存失效的时候,会去读取二级缓存,二级缓存异步更新。(二级缓存的时间可以很长)


下面是第一种策略的代码模拟:

  1. public static void query() {
    BaseService bs = new BaseService();
    Jedis jedis = jedisPool.getResource();
    String req = "test123";
    String res;
    if (jedis.get(req) == null) {
    System.out.println("##查询接口服务");
    res = bs.query(req);
    jedis.setex(req, 100, res);
    } else {
    System.out.println("##查询缓存");
    res = jedis.get(req);
    System.out.println("缓存剩余时间:"+jedis.ttl(req));
    // 当时间超过10秒,异步更新数据到缓存
    if (jedis.ttl(req) < 90) {
    //模拟得到推送,接受推送,执行
    new Thread() {
    @Override
    public void run() {
    String res = bs.query(req);
    jedis.setex(req, 100, res);
    System.out.println("异步更新数据:"+req);
    }
    }.start();
    }
    }
    System.out.println(res);
    jedisPool.returnResource(jedis);
    }




运行结果:
  1. ##查询缓存
  2. 缓存剩余时间: 67
  3. hello:test123
  4. ##查询缓存
  5. 缓存剩余时间: 67
  6. hello:test123
  7. ##查询缓存
  8. 缓存剩余时间: 67
  9. hello:test123
  10. ##查询缓存
  11. 缓存剩余时间: 67
  12. hello:test123
  13. ##查询缓存
  14. 缓存剩余时间: 67
  15. hello:test123
  16. 异步更新数据:test123
  17. 异步更新数据:test123
  18. 异步更新数据:test123
  19. 异步更新数据:test123
  20. 异步更新数据:test123

为了保证一段时间内,更新一个缓存只执行一次,做如下锁

  1. public static void main(String[] args) {
    beginTime = System.currentTimeMillis();
    for (int i = 0; i < 5; i++) {
    new Thread() {
    @Override
    public void run() {
    // 执行查询
    query();
    // System.out.println(System.currentTimeMillis()-beginTime);
    }
    }.start();
    }
    }
    public static void query() {
    BaseService bs = new BaseService();
    Jedis jedis = jedisPool.getResource();
    String req = "test123";
    String res;
    System.out.println(jedis.get(req));
    if (jedis.get(req) == null) {
    System.out.println("##查询接口服务");
    res = bs.query(req);
    jedis.setex(req, 100, res);
    } else {
    System.out.println("##查询缓存");
    res = jedis.get(req);
    System.out.println("缓存剩余时间:"+jedis.ttl(req));
    // 当时间超过10秒,异步更新数据到缓存
    if (jedis.ttl(req) < 90) {
    //模拟得到推送,接受推送,执行
    new Thread() {
    @Override
    public void run() {
    //保证5秒内,一条数据只更新一次
    Long incr = jedis.incr("incr-flag-"+req);
    jedis.expire("incr-flag-"+req, 5);
    if(1 == incr){
    String resT = bs.query(req);
    jedis.setex(req, 100, resT);
    System.out.println("异步更新数据:"+req);
    }
    }
    }.start();
    }
    }
    jedisPool.returnResource(jedis);
    }



运行两次,间隔10秒。运行结果:

  1. hello:test123
  2. ##查询缓存
  3. hello:test123
  4. hello:test123
  5. hello:test123
  6. hello:test123
  7. ##查询缓存
  8. ##查询缓存
  9. ##查询缓存
  10. ##查询缓存
  11. 异步更新数据:test123


这样,即可保证一次查询比较耗时的情况下,用户能流畅的查询。用户体验大大提升

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值