相对我们对于redis的使用场景都已经想当的熟悉。对于大量的数据,为了缓解接口(数据库)的压力,我们对查询的结果做了缓存的策略。一开始我们的思路是这样的。
1.执行查询
2.缓存中存在数据 -> 查询缓存
3.缓存中不存在数据 -> 查询实时接口
对此,我简单模拟了我们的缓存机制 。
这是一个查询实时的服务
package yyf.Jedis.toolsByRedis.cacheCacheTools;
/**
* 模拟服务
* @author
*
*/
public class BaseService {
public String query(String req) {
return "hello:" + req;
}
}
从代码中我们可以看到,这个服务反应应该是非常快的。
-
package yyf.Jedis.toolsByRedis.cacheCacheTools; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPoolConfig; public class CacheCacheToolTest { static JedisPool jedisPool; static { JedisPoolConfig config = new JedisPoolConfig(); config.setMaxTotal(100); config.setMaxIdle(5); config.setMaxWaitMillis(1000); config.setTestOnBorrow(false); jedisPool = new JedisPool(config, "127.0.0.1", 6379, 1000); Jedis jedis = jedisPool.getResource(); jedisPool.returnResource(jedis); } public static void main(String[] args) { for (int i = 0; i < 5; i++) { new Thread(){@Override public void run() { //执行查询 query(); }}.start(); } } public static void query() { BaseService bs = new BaseService(); Jedis jedis = jedisPool.getResource(); String req = "test123"; String res; if (jedis.get(req) == null) { System.out.println("##查询接口服务"); res = bs.query(req); jedis.setex(req, 10, res); } else { System.out.println("##查询缓存"); res = jedis.get(req); } System.out.println(res); jedisPool.returnResource(jedis); } }
-
##查询接口服务
-
hello:test123
-
##查询缓存
-
##查询缓存
-
##查询缓存
-
hello:test123
-
hello:test123
-
hello:test123
-
##查询缓存
-
hello:test123
-
看到结果,我们似乎觉得这个查询非常的合理,当时当我们的实时接口查询速度很慢的时候,就暴露出问题来了。
-
package yyf.Jedis.toolsByRedis.cacheCacheTools; /** * 模拟服务 * @author * */ public class BaseService { public String query(String req) { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } return "hello:" + req; } }
-
-
##查询接口服务
-
##查询接口服务
-
##查询接口服务
-
##查询接口服务
-
##查询接口服务
-
hello:test123
-
hello:test123
-
hello:test123
-
hello:test123
-
hello:test123
-
如果在查询实时过程时,对于相同的请求,能够让其等待,那么效率会有大大的提升:(为了模拟,加锁处理)
-
public static void main(String[] args) { beginTime = System.currentTimeMillis(); for (int i = 0; i < 5; i++) { new Thread(){@Override public void run() { //执行查询 synchronized (args) { query(); } //System.out.println(System.currentTimeMillis()-beginTime); }}.start(); } }
-
##查询缓存
-
hello:test123
-
##查询缓存
-
hello:test123
-
##查询缓存
-
hello:test123
-
##查询缓存
-
hello:test123
-
##查询缓存
-
hello:test123
现在就都是查询缓存了。其实对于查询并发这样做是比好的。打个比方:
一堆人需要从一个出口出去,这个出口有一个小门已经可以通过,还有一个大门未打开,需要从小门出去打开。这个大门非常大(redis查询速度非常快)。如果大批的人同时出去(高并发),那么必然在小门挤很长的时间。此时,如果现有一个人去把大门先打开,那么后面的人(包括本来要挤小门的人)可以直接从大门出去,效率肯定是后面的划算。
对于查询实时一次比较慢的情况下,可以先让一个线程进去。让其它线程等待。
当然,这样并不完美。当缓存失效,那么查询就会卡顿一下。为了保证用户能一直流畅的查询,我有如下两种方案:
1.在缓存存在的时间里的进行异步查询去更新缓存。
2.使用二级缓存,并且当一级缓存失效的时候,会去读取二级缓存,二级缓存异步更新。(二级缓存的时间可以很长)
下面是第一种策略的代码模拟:
-
public static void query() { BaseService bs = new BaseService(); Jedis jedis = jedisPool.getResource(); String req = "test123"; String res; if (jedis.get(req) == null) { System.out.println("##查询接口服务"); res = bs.query(req); jedis.setex(req, 100, res); } else { System.out.println("##查询缓存"); res = jedis.get(req); System.out.println("缓存剩余时间:"+jedis.ttl(req)); // 当时间超过10秒,异步更新数据到缓存 if (jedis.ttl(req) < 90) { //模拟得到推送,接受推送,执行 new Thread() { @Override public void run() { String res = bs.query(req); jedis.setex(req, 100, res); System.out.println("异步更新数据:"+req); } }.start(); } } System.out.println(res); jedisPool.returnResource(jedis); }
运行结果:
-
##查询缓存
-
缓存剩余时间: 67
-
hello:test123
-
##查询缓存
-
缓存剩余时间: 67
-
hello:test123
-
##查询缓存
-
缓存剩余时间: 67
-
hello:test123
-
##查询缓存
-
缓存剩余时间: 67
-
hello:test123
-
##查询缓存
-
缓存剩余时间: 67
-
hello:test123
-
异步更新数据:test123
-
异步更新数据:test123
-
异步更新数据:test123
-
异步更新数据:test123
-
异步更新数据:test123
为了保证一段时间内,更新一个缓存只执行一次,做如下锁
-
public static void main(String[] args) { beginTime = System.currentTimeMillis(); for (int i = 0; i < 5; i++) { new Thread() { @Override public void run() { // 执行查询 query(); // System.out.println(System.currentTimeMillis()-beginTime); } }.start(); } } public static void query() { BaseService bs = new BaseService(); Jedis jedis = jedisPool.getResource(); String req = "test123"; String res; System.out.println(jedis.get(req)); if (jedis.get(req) == null) { System.out.println("##查询接口服务"); res = bs.query(req); jedis.setex(req, 100, res); } else { System.out.println("##查询缓存"); res = jedis.get(req); System.out.println("缓存剩余时间:"+jedis.ttl(req)); // 当时间超过10秒,异步更新数据到缓存 if (jedis.ttl(req) < 90) { //模拟得到推送,接受推送,执行 new Thread() { @Override public void run() { //保证5秒内,一条数据只更新一次 Long incr = jedis.incr("incr-flag-"+req); jedis.expire("incr-flag-"+req, 5); if(1 == incr){ String resT = bs.query(req); jedis.setex(req, 100, resT); System.out.println("异步更新数据:"+req); } } }.start(); } } jedisPool.returnResource(jedis); }
运行两次,间隔10秒。运行结果:
-
hello:test123
-
##查询缓存
-
hello:test123
-
hello:test123
-
hello:test123
-
hello:test123
-
##查询缓存
-
##查询缓存
-
##查询缓存
-
##查询缓存
-
异步更新数据:test123
这样,即可保证一次查询比较耗时的情况下,用户能流畅的查询。用户体验大大提升