Pandas:DataFrame的行列操作

import numpy as np
import pandas as pd
from pandas import Series,DataFrame
data = {'数量':[3,2,5],
       '价格':[10,9,8]}

一、创建时指定行和列索引及其顺序

在指定列索引时,若该列不存在,则初始化该列为NaN

df = DataFrame(data,columns=['品种','价格','数量'],index=['苹果','梨','草莓'])
print(df)
     品种  价格  数量
苹果  NaN  10   3
梨   NaN   9   2
草莓  NaN   8   5

二、获取DataFrame的列

1.字典的方式

print(df['数量'])
苹果    3
梨     2
草莓    5
Name: 数量, dtype: int64

2.属性的方式

print(df.数量)
苹果    3
梨     2
草莓    5
Name: 数量, dtype: int64

三、获取DataFrame的行

直接使用切片获取

print(df[:1])
     品种  价格  数量
苹果  NaN  10   3

四、同时操作行和列:loc和iloc

1.按标签存取数据:loc

print(df.loc['苹果','价格'])
10
print(df.loc['梨':,'价格':])
    价格  数量
梨    9   2
草莓   8   5

2.按位置存取数据:iloc

print(df.iloc[0,1])
10
print(df.iloc[1:,1:])
    价格  数量
梨    9   2
草莓   8   5

五、创建列

df['产地'] = ['新西兰','美国','中国']
print(df)
     品种  价格  数量   产地
苹果  NaN  10   3  新西兰
梨   NaN   9   2   美国
草莓  NaN   8   5   中国

六、删除列

del df['品种']
print(df)
    价格  数量   产地
苹果  10   3  新西兰
梨    9   2   美国
草莓   8   5   中国

七、修改列值

df['价格'] = np.arange(2,5)
print(df)
    价格  数量   产地
苹果   2   3  新西兰
梨    3   2   美国
草莓   4   5   中国

八、转置:对换行列索引

print(df.T)
     苹果   梨  草莓
价格    2   3   4
数量    3   2   5
产地  新西兰  美国  中国

九、为行(index)和列(columns)索引的name属性赋值

df.index.name = '水果'
df.columns.name = '信息'
print(df)
信息  价格  数量   产地
水果             
苹果   2   3  新西兰
梨    3   2   美国
草莓   4   5   中国
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BQW_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值