人才程序员
软件:C/C++ Qt CMake 数据结构 Linux网络。C++Opencv Python 前端(HTML、CSS....) 鸿蒙软件开发ArkTS 硬件:51单片机,esp系列(esp32、esp8266、esp32-s3),stm32、freertos。openharmony。可以带徒弟:C/C++ Python Lua STM32 esp32
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【python 机器学习】sklearn岭回归
想象你正在画一张线图来预测未来的气温。如果你没有足够的信息,可能会画出一条非常弯曲的线,试图适应每个数据点。但如果你能稍微让这些曲线更加平滑一些,可能就能预测得更准。岭回归就像是给这条曲线加上一些“阻力”,让它不能过于弯曲,确保更好地预测未来。岭回归通过引入L2正则化来防止过拟合,并处理多重共线性问题。sklearn提供的Ridge类可以轻松实现岭回归,使用alpha参数来控制正则化强度。通过调整alpha值和使用交叉验证,可以找到最佳的正则化强度,从而提高模型的泛化能力。原创 2025-02-16 08:33:22 · 767 阅读 · 0 评论 -
【python 机器学习】熵的介绍
在机器学习中,熵是一个非常重要的概念,尤其是在决策树(如ID3、CART等算法)中。熵帮助我们量化数据的不确定性,它告诉我们数据有多“混乱”或“混杂”。在这篇文章中,我们将用简单的语言介绍熵的概念,并解释它是如何帮助机器学习算法进行决策的。原创 2025-02-16 08:34:29 · 602 阅读 · 0 评论 -
【python 机器学习】信息增益介绍
在机器学习中,特别是在决策树算法(如ID3)中,信息增益是一个非常重要的概念。它用于衡量通过某个特征来分割数据时,信息的不确定性减少了多少。信息增益帮助我们选择最优的特征,使得数据分割后更加“纯净”。在这篇文章中,我们将以简单的语言介绍信息增益的概念,并解释它是如何在决策树中起作用的。原创 2025-02-16 08:34:37 · 904 阅读 · 0 评论 -
【python 机器学习】聚类的模型评估
然而,与监督学习不同,聚类没有标签,因此评估方法必须基于不同的度量标准,例如簇内一致性、簇间差异以及模型的稳定性。其中,( \text{Tr}(B_k) )是簇间散布矩阵的迹,( \text{Tr}(W_k) )是簇内散布矩阵的迹,N是样本总数,k是簇的数量。其中,( d(C_i, C_j) )是簇( C_i )和簇( C_j )的中心之间的距离,( R(C_i) )是簇( C_i )的内部散布度。其中,( a(i) )是数据点i到同簇其他点的平均距离,( b(i) )是数据点i到最近簇的平均距离。原创 2025-02-16 08:34:15 · 952 阅读 · 0 评论 -
【python 机器学习】sklearn 逻辑回归对癌症进行分类
假设你在看很多照片,有些是坏的苹果,有些是好的苹果。你根据苹果的颜色、大小等信息来判断它们是好还是坏。癌症分类也是类似的,医生会根据病人一些身体特征来判断病人是不是得了癌症,帮助病人早点得到治疗。逻辑回归是一种简单、直观且广泛应用于二分类问题的算法。它通过Sigmoid函数将线性回归的输出映射到概率空间,从而可以用来做分类。在癌症分类问题中,逻辑回归通过学习特征与标签之间的关系,能够有效地判断肿瘤是良性还是恶性。通过sklearn提供的简单接口,我们能够快速实现逻辑回归,并对模型进行评估。原创 2025-02-16 08:33:39 · 703 阅读 · 0 评论 -
【python 机器学习】sklearn ROC曲线与AUC指标
ROC曲线:就像是在跑步比赛中看不同运动员在不同阶段的表现。你可以看到在每一个时刻,模型在判断对还是错时的表现。AUC(曲线下面积):ROC曲线下方的面积,越大越好。它告诉我们模型整体表现有多好,AUC越接近1,模型就越优秀。ROC曲线是用于评估二分类模型性能的工具,能够显示模型在不同阈值下的表现。它通过绘制假正率(FPR)与真正率(TPR)之间的关系,帮助我们评估模型分类效果。**AUC(Area Under the Curve)**是ROC曲线下方的面积,它综合反映了分类模型的性能。原创 2025-02-16 08:33:53 · 1155 阅读 · 0 评论 -
【python 机器学习】模型的保存与加载
例如,当模型训练完成后,保存模型可以避免每次都重新训练,节省时间和计算资源。同时,通过保存模型,能够确保模型在不同的系统或环境中复现其性能。在Python中,常见的保存和加载机器学习模型的方法包括使用。是一个高效的序列化工具,适合保存大型的机器学习模型,尤其是那些包含大量数据的模型(如包含大量系数的线性模型、决策树、随机森林等)。通过学习如何保存与加载模型,你能够轻松地将训练好的模型应用于实际的生产环境,避免了重复训练的开销,并能够确保模型的复现性。是一个更为合适的选择,尤其是在保存包含大量数据的模型时。原创 2025-02-16 08:34:00 · 1011 阅读 · 0 评论 -
【python 机器学习】sklearn 梯度下降优化器
梯度下降优化器就像一个“智能助手”,它帮助你一步步找到最好的解决办法。你告诉它目标是什么,它就帮你找到从当前位置到目标的最快路。sklearn提供的梯度下降优化器(如和)使得我们可以方便地使用梯度下降算法来训练回归和分类模型。这些优化器通过自动化梯度计算和参数更新,简化了模型训练过程。在使用梯度下降优化器时,超参数(如学习率、最大迭代次数、容忍度等)对模型性能有着重要影响,因此我们通常需要通过交叉验证等方法来选择最优的超参数。通过本文的示例,我们展示了如何使用。原创 2025-02-16 08:33:05 · 1021 阅读 · 0 评论 -
【python 机器学习】基尼系数介绍
基尼系数是一个非常重要的统计学指标,常用于评估数据的不均衡性或不平等程度。在机器学习中,基尼系数(特别是在决策树算法中)用于衡量一个数据集的纯度。简单来说,它告诉我们数据集有多“混乱”。基尼系数越小,说明数据集越纯,分割的效果越好。今天我们将用简单的语言介绍基尼系数的概念,并进一步用学术的方式解释它。原创 2025-02-16 08:34:45 · 949 阅读 · 0 评论 -
【python 机器学习】逻辑回归原理
假设你有一堆学生,每个学生都有一些成绩和学习时间,老师希望通过这些信息来判断学生是否会及格。逻辑回归就像是一个帮助老师做决定的工具,它根据学生的成绩和学习时间,计算出学生及格的概率,然后告诉老师学生有多大的可能性及格。逻辑回归是一种广泛应用于二分类问题的算法,其通过Sigmoid函数将线性回归的输出映射到0和1之间的概率值。损失函数采用对数似然函数(Log-Loss),通过最小化损失函数来优化模型参数。原创 2025-02-16 08:33:30 · 627 阅读 · 0 评论 -
【python 机器学习】sklearn 精确率、召回率、F1-score
精确率:如果模型说某个事物是“坏的”,它是否说对了?如果经常把好事物误认为坏的,精确率就低。召回率:模型是否能找出所有“坏的”事物?如果有坏的事物它不找出来,召回率就低。F1-score:精确率和召回率的结合,它是两者的一个平衡点。一个高的F1-score表示模型在精确率和召回率之间做得都很好。精确率和召回率是评估分类模型的重要指标,特别是在数据不平衡的情况下。精确率关注错误分类为正类的负类样本,而召回率关注模型是否能够识别出所有的正类样本。F1-score。原创 2025-02-16 08:33:46 · 955 阅读 · 0 评论 -
【python 机器学习】sklearn 过拟合与欠拟合
过拟合就像是你背了一本书上的所有字,但考试的时候问题不完全一样,这样你就做不好题了,因为你记住了具体的内容而没理解其中的意思。欠拟合就像是你根本没记住书上的内容,考试的时候也没有答对题目,因为你没学透那些知识点。过拟合与欠拟合是机器学习中常见的问题,正确识别并采取相应的措施至关重要。通过sklearn提供的工具和模型,我们可以轻松地检测过拟合与欠拟合,并通过调整模型的复杂度、使用正则化或增加数据量来改善模型的表现。合理选择模型复杂度和正则化强度,能够有效地避免过拟合和欠拟合,提高模型的泛化能力。原创 2025-02-16 08:33:15 · 934 阅读 · 0 评论 -
【python 机器学习】KMeans算法原理
KMeans聚类:假设你有一堆不同颜色的球,你的任务是把这些球分成几组,每一组里的球颜色尽量相似。KMeans算法就是帮助你自动完成这个分组任务的工具。原创 2025-02-16 08:34:08 · 755 阅读 · 0 评论 -
【python XGBoost】回归树构建方法
在这篇文章中,我们将通俗易懂地讲解 XGBoost 回归树的构建方法,并提供 Python 代码示例,帮助大家理解如何用 XGBoost 进行回归任务。假设你想预测房子的价格,影响房价的因素可能有:如果我们把这些因素作为输入,房价作为输出,XGBoost 的回归树会自动学习数据中的模式,并根据这些因素构建一棵决策树,最终给出预测的房价。回归树的特点:在 XGBoost 里,回归树是通过最小化目标函数来优化的。XGBoost 的目标函数由两部分组成:Obj=L(θ)+Ω(θ)Obj = L(\theta原创 2025-04-26 11:16:15 · 597 阅读 · 0 评论 -
【python 机器学习】SVM基本介绍
支持向量机(SVM, Support Vector Machine)是一种强大的机器学习算法,用来帮助我们做分类和回归预测。简单来说,SVM就是通过找到一个“最佳的分割线”来区分不同的类别,就像你用一条直线把不同颜色的球分开一样。接下来,我们用简单的语言来聊聊SVM的基本概念和它是怎么工作的。原创 2025-04-26 11:15:41 · 707 阅读 · 0 评论 -
【python 机器学习】目标函数确定和树的复杂度介绍
在这篇文章中,我们将通俗易懂地讲解机器学习中目标函数的确定,以及决策树模型的复杂度问题,帮助大家理解这些概念如何影响模型的学习和预测能力。1. 什么是目标函数?(通俗易懂版)📌 举个例子:考试成绩预测假设你是一名数学老师,想要预测学生的考试成绩。平时作业成绩课堂表现是否认真听课是否参加额外辅导你收集了过去学生的学习数据,现在要用机器学习模型来预测新学生的考试分数。那么,你如何判断模型的预测是否准确呢?这里就需要一个目标函数(Objective Function),也叫。原创 2025-04-26 11:16:28 · 863 阅读 · 0 评论 -
【python 机器学习】马尔科夫链介绍
在这篇文章中,我们将用通俗易懂的方式讲解马尔科夫链(Markov Chain),并介绍它在机器学习中的应用。1. 马尔科夫链是什么?(通俗易懂版)举个例子上学(S1)在家(S2)出去玩(S3)你每天的行为并不是完全随机的,而是依赖于前一天的状态如果今天去上学(S1),那么明天继续上学的概率很高,但偶尔可能在家或出去玩。如果今天在家(S2),明天可能继续待在家,也可能去上学或出去玩。如果今天出去玩(S3),明天可能回家,也可能去上学。这个过程可以用马尔科夫链来描述。当前状态决定未来状态。原创 2025-04-26 11:16:59 · 1071 阅读 · 0 评论 -
【python 机器学习】sklearn cart减枝
在机器学习中,CART(Classification and Regression Tree)是一个广泛使用的决策树算法,能够用于分类和回归任务。然而,CART在训练过程中容易出现过拟合,也就是当模型在训练数据上表现很好,但在新数据上的表现差。这时,剪枝技术可以帮助我们提高模型的泛化能力,防止过拟合。今天我们将介绍CART剪枝的概念,并通过sklearn来实现剪枝。原创 2025-04-19 09:58:48 · 743 阅读 · 0 评论 -
【python 机器学习】熵的介绍
在机器学习中,熵是一个非常重要的概念,尤其是在决策树(如ID3、CART等算法)中。熵帮助我们量化数据的不确定性,它告诉我们数据有多“混乱”或“混杂”。在这篇文章中,我们将用简单的语言介绍熵的概念,并解释它是如何帮助机器学习算法进行决策的。原创 2025-04-19 09:58:34 · 1028 阅读 · 0 评论 -
【python 机器学习】回归决策树与线性回归对比
在机器学习中,回归决策树和线性回归是两种常见的回归模型,它们都有各自的优缺点,适用于不同类型的数据。回归决策树是一种基于树形结构的非线性回归模型,而线性回归则是一种简单的统计方法,用于寻找特征与目标之间的线性关系。今天,我们将比较这两者的区别,并通过Python实现一个对比实验。线性回归:你可以想象你正在绘制一条直线,这条直线尽量让所有数据点靠近它。线性回归通过找出一条最佳的直线,来预测数据的输出值。例如,如果你要预测一个房子的价格,线性回归会试图找到一个面积与价格之间的直线关系。简单来说,线性回归假设特征原创 2025-04-19 09:59:01 · 843 阅读 · 0 评论 -
【python 机器学习】sklearn SVM回归介绍
在这篇文章中,我们将用通俗易懂的方式讲解SVM(支持向量机)的回归方法(SVR),并分析它在预测任务中的作用。你可能听过SVM(支持向量机)用于分类问题,但其实SVM 也可以用来做回归,这种方法就叫做 SVR(支持向量回归,Support Vector Regression)。假设你是一名房产经纪人,想预测一套房子的价格。你有以下数据:你想找到一个数学公式(回归模型),让它能根据面积和房龄来预测房价。传统的线性回归会用一条直线来拟合数据,但有时候房价波动很大,不适合简单的直线。SVM 回归就像是在数据周围划原创 2025-04-21 20:33:19 · 643 阅读 · 0 评论 -
【python 机器学习】SVM损失函数
在这篇文章中,我们将用通俗易懂的方式讲解SVM(支持向量机)的损失函数,并分析它在分类任务中的作用。1. SVM 损失函数是什么?假设你是一名老师,你要把学生分成**“通过”和“不通过”两类,并且你希望尽可能清晰地划分两组**。如果有学生的成绩太接近通过分数线,你可能会犹豫该怎么分。SVM 的目标就是找到最优的分界线,同时它的损失函数会衡量错误分类的代价,确保模型更稳定地进行分类。间隔最大化(Margin Maximization):让分界线尽可能远离数据点,使分类更加稳定。原创 2025-04-26 11:15:48 · 961 阅读 · 0 评论 -
【python 机器学习】模型的保存与加载
例如,当模型训练完成后,保存模型可以避免每次都重新训练,节省时间和计算资源。同时,通过保存模型,能够确保模型在不同的系统或环境中复现其性能。在Python中,常见的保存和加载机器学习模型的方法包括使用。是一个高效的序列化工具,适合保存大型的机器学习模型,尤其是那些包含大量数据的模型(如包含大量系数的线性模型、决策树、随机森林等)。通过学习如何保存与加载模型,你能够轻松地将训练好的模型应用于实际的生产环境,避免了重复训练的开销,并能够确保模型的复现性。是一个更为合适的选择,尤其是在保存包含大量数据的模型时。原创 2025-04-19 09:58:28 · 589 阅读 · 0 评论 -
【python 机器学习】lightGBM算法
在这篇文章中,我们将 通俗易懂 地讲解 LightGBM 算法,并提供 Python 代码示例,帮助大家理解如何使用 LightGBM 进行机器学习任务。假设你想预测房子的价格,影响房价的因素可能有:如果我们把这些因素作为输入,房价作为输出,LightGBM 会自动学习数据中的模式,并构建一系列的决策树,最终给出预测的房价。LightGBM(Light Gradient Boosting Machine)是一个**基于梯度提升(Gradient Boosting)**的机器学习算法,专门用于高效的分类和回归原创 2025-04-21 20:33:32 · 869 阅读 · 1 评论 -
【python 机器学习】XGBoost目标函数推导
假设你想开一家餐厅,你的目标是。原创 2025-04-26 11:16:21 · 807 阅读 · 0 评论 -
【python 机器学习】SVM目标函数推导过程及举例
SVM 是机器学习中非常强大的分类算法,尤其适用于。原创 2025-04-21 20:32:59 · 604 阅读 · 0 评论 -
【python 机器学习】信息增益率
在机器学习中的决策树算法(例如C4.5),信息增益率是用来选择最佳特征的另一个重要指标。信息增益率改进了信息增益的不足,尤其是在处理具有许多取值的特征时。通过使用信息增益率,决策树能够做出更加准确的决策。今天,我们将简单介绍信息增益率的概念、计算方法以及它与信息增益的区别。原创 2025-04-19 09:58:41 · 674 阅读 · 0 评论 -
【python 机器学习】bagging和随机森林
假设你要参加一个考试,题目比较难,如果你一个人答题可能有很多错误,但是如果你找几个朋友来一起答,每个人做出不同的选择,最后大家通过讨论汇总出最正确的答案,最终的结果会更准确。每棵树都是通过不同的数据子集和不同的特征子集来训练的。的引入(不仅仅是数据,甚至在特征选择时也做了随机化),因此每棵树的“思路”都不完全一样,这样可以大大增加模型的多样性,降低过拟合的风险。,生成多个数据子集,训练多个模型,然后对这些模型的结果进行投票(分类问题)或平均(回归问题),从而得到最终的预测结果。,从而增强模型的多样性。原创 2025-04-21 20:32:25 · 1032 阅读 · 0 评论 -
【python 机器学习】sklearn boosting介绍
在机器学习中,Boosting是一种强大的集成学习方法,它通过将多个弱学习器组合成一个强学习器来提高模型的性能。Boosting的核心思想是通过逐步修正之前模型的错误,来提升最终模型的准确性。本文将介绍Boosting的基本概念、工作原理以及在sklearn中的实现方法。原创 2025-04-21 20:32:33 · 1449 阅读 · 0 评论 -
【python 机器学习】sklearn EM算法
在这篇文章中,我们将用通俗易懂的方式讲解EM(Expectation-Maximization)算法,并介绍如何在sklearn中使用它。1. EM 算法是什么?举个例子假设你是一名侦探,需要调查一场聚会,但你无法直接知道每个人的身份(比如学生、老师或家长)。你能做的只有观察他们的行为学生可能会讨论作业。老师可能会和其他老师聊天。家长可能会关注孩子的表现。你想要通过这些信息推测每个人的身份,但无法直接知道谁是学生、老师或家长。这时,EM 算法就派上用场了!假设(Expectation,E 步)原创 2025-04-26 11:15:55 · 856 阅读 · 0 评论 -
【python 机器学习】xgboost最优模型构建方法
假设你经营一个智能农场,需要预测未来一周的农作物产量。原创 2025-04-26 11:16:34 · 992 阅读 · 0 评论 -
【python 机器学习】集成学习基本介绍
在机器学习中,集成学习是一种通过组合多个弱学习器(如决策树、支持向量机等)来构建一个强学习器的方法。集成学习的主要思想是:通过结合多个模型的预测,能够比单一模型更好地进行预测,尤其在复杂的任务中具有更强的泛化能力。今天,我们将从简单的角度介绍集成学习的基本概念、原理和常见算法。原创 2025-04-19 09:59:08 · 786 阅读 · 0 评论 -
【python 机器学习】维特比算法解码隐藏状态序列
在这篇文章中,我们将用通俗易懂的方式讲解维特比算法(Viterbi Algorithm),并介绍它在**隐马尔可夫模型(HMM)**中的应用。假设小明每天的天气可能是:但是,我们不能直接知道天气情况,只能通过观察小明的行为来推测,比如:现在,我们观察到了一系列小明的行为,比如:那么,小明最可能的天气序列是什么呢?这是维特比算法要解决的问题!维特比算法是一种动态规划方法,它用于找到给定观察序列下最可能的隐藏状态序列。在**隐马尔可夫模型(HMM)**中,观察值(如小明的行为)是由某个隐藏状态(如天气)产生原创 2025-04-26 11:16:48 · 613 阅读 · 0 评论 -
【python 机器学习】sklearn GBDT介绍
是一种集成学习方法,它通过将多个决策树结合在一起,逐步优化每个模型的预测结果。GBDT 是一种非常强大的机器学习算法,广泛应用于分类、回归等任务,且表现出色。本文将介绍GBDT的基本概念、工作原理以及在sklearn中的实现方法。原创 2025-04-21 20:32:41 · 910 阅读 · 0 评论 -
【python 机器学习】sklearn HMM模型
在这篇文章中,我们将用通俗易懂的方式讲解HMM(隐马尔科夫模型,Hidden Markov Model),并介绍它在机器学习中的应用。1. HMM 模型是什么?(通俗易懂版)举个例子开心(S1)一般(S2)难过(S3)但问题是,我们无法直接知道你的真实心情,只能通过一些观察到的行为如果你去公园玩,可能是开心的如果你待在家里看书,可能是一般的如果你不出门,可能是难过的“心情” 是隐藏状态(Hidden States),我们看不到,只能猜测。“行为” 是可观察状态(Observed States)原创 2025-04-26 11:16:02 · 795 阅读 · 0 评论 -
【python 机器学习】sklearn回归决策树
在机器学习中,回归决策树是一种通过树形结构进行预测的模型,专门用于回归任务,也就是预测一个连续的数值。回归决策树与分类决策树(用于分类任务)有很多相似之处,但是它的输出是一个实数值,而不是类别标签。回归决策树使用递归划分数据集的方式,根据特征将数据集分成多个子集,每个子集对应一个数值预测。今天我们将深入了解回归决策树的基本概念、原理和如何使用Python中的sklearn库来实现回归决策树。原创 2025-04-19 09:58:54 · 971 阅读 · 0 评论 -
【python 机器学习】sklearn SVM算法api初步使用
提供的 API,我们可以轻松使用 SVM 进行分类,并绘制分类边界,让我们直观理解它是如何工作的。提供的鸢尾花(Iris)数据集,它有三种不同的花,我们只选其中两种,做一个二分类任务。(正则化参数):值越大,分类越严格,但可能过拟合;值越小,分类越松散,但可能欠拟合。这会画出 SVM 计算出的最佳分割线,并用不同的颜色显示分类区域。,把这些球分开,使得同颜色的球都在同一边。,这样即使新来的球稍微有点偏,也能被正确分类。在这篇文章中,我们将使用通俗易懂的语言介绍。核):控制影响范围,值越大,模型越复杂。原创 2025-04-21 20:32:51 · 704 阅读 · 0 评论 -
【python 机器学习】sklearn SVM核方法的介绍
在这篇文章中,我们将用通俗易懂的方式讲解SVM(支持向量机)的核方法,并分析它在分类任务中的作用。1. SVM 核方法是什么?(通俗易懂版)假设你是一名老师,你要把班上的学生按照**“擅长数学”和“擅长语文”**进行分类。学生数学成绩语文成绩擅长的学科A9050数学B8545数学C4090语文D3585语文如果你用直线来划分数学和语文的学生,很容易分开。但如果你想把学生按照性格类型(内向/外向)来分组,你会发现用直线很难做到,因为数据可能呈现弯曲的分布。原创 2025-04-21 20:33:06 · 877 阅读 · 0 评论 -
【python 机器学习】前向后向算法评估观察序列概率
在这篇文章中,我们将用通俗易懂的方式讲解前向后向算法(Forward-Backward Algorithm),并介绍它在**隐马尔可夫模型(HMM)**中的应用。假设小明每天的天气有三种可能:但是,我们不能直接知道天气情况,只能通过观察小明的行为来推测,比如:假设我们已经观察了一段时间小明的行为,并且有一个HMM 模型,现在我们想要计算:这个问题就是前向后向算法要解决的问题。它是HMM 计算观察序列概率的核心算法。HMM 主要用于分析隐藏状态的概率,比如:当我们知道 HMM 模型的参数后,我们就可以使用前向原创 2025-04-26 11:16:53 · 961 阅读 · 0 评论 -
【python机器学习】鲍姆-韦尔奇算法简介
在这篇文章中,我们将用通俗易懂的方式讲解鲍姆-韦尔奇算法(Baum-Welch Algorithm),并介绍它在**隐马尔可夫模型(HMM)**中的应用。1. 什么是鲍姆-韦尔奇算法?(通俗易懂版)举个例子:小明的天气预测假设我们不知道每天的真实天气情况(晴天☀️、阴天☁️、雨天🌧️),但我们可以通过观察小明的行为(散步、购物、清扫)来推测天气的变化规律。我们希望构建一个隐马尔可夫模型(HMM),能够学习天气的变化模式。我们并不知道天气的状态转移概率(比如从晴天到雨天的概率是多少)。我们也不知道。原创 2025-04-26 11:16:42 · 1019 阅读 · 0 评论