AAA12023 文章Cyclically Disentangled Feature Translation for Face Anti-spoofing阅读笔记

摘要:

CDFTN

生成为标签的依据:

1源域共有的活体特征2 目标域特有的内容特征

DG方法需要大量标注源域,而且不需要目标域数据。麻烦

目前有大量的无标签的数据,可以用于DA

假设图片都存在两个天生的分类特征:跟域误关的活性特征;跟域相关的内容特征

“which is achieved by swapping the domain-invariant liveness features and the domain-specific content features from different domains” 它通过交换来自不同域的域不变活性特征和域特定内容特征来实现

swap

“In contrast to existing DA-based FAS methods (Li et al. 2018; Wang et al. 2021a) that directly make decisions based on the exacted domain-invariant features, we instead use these features to synthesize training samples and obtain a discriminative classifier on synthetic pseudo-labeled training images”(Yue 等, 2022, p. 2) 与现有的基于DA的FAS方法( Li et al 2018 ; Wang等2021a)直接根据提取的域不变特征进行决策不同,我们使用这些特征来合成训练样本,并在合成的伪标记训练图像上获得一个判别分类器

生成+有监督

“Given the practical scenario that”(Yue 等, 2022, p. 2) 考虑到实际情景:

创新点:

1,针对基于有标记源域数据和无标记目标域数据的跨场景FAS问题,我们提出生成伪标记图像来训练一个可泛化的分类器

2,我们设计了一个新颖的基于领域对抗训练的去纠缠表示学习的特征翻译框架;我们还将该框架从单源→单目标扩展到单源→多个目标点特征翻译。

3,在没有其他深度或时间信息的无标签目标域数据的情况下,我们的方法取得了优于现有方法的性能。

相关工作:

fas工作

“Unsupervised Domain Adaptation” 无监督域适应方法:1,最小化源域和目标域子空间之间的差异2,对抗性方法的领域混淆3,图像到图像转换的域变换

解纠缠的方法

“Disentangled Representation Learning” 离散表示学习

图像生成方面的先进方法GAN和VAE

结论:

效果很好

方法:

“marginal distributions”(Yue 等, 2022, p. 3) 边际分布

DL是域分类器,源域和目标域的二分类器,使用交叉熵函数,

活体特征的提取损失函数,使提取的L特征更有判别行

生成器G的损失,最重要的:

L特征交换后后域分类器的分类损失;

循环一致性损失;

L特征交换后L特征的损失

通过6个损失训练整个L特征交换网络,最终目的是生成带有为标签的源域L特征目标域C特征的图片。然后训练分类器。

实验;

效果很好,不好的找原因

一到多比一到一(多个混在一起),多个一到一求平均值,效果都好。说明该模型在一到多时有优势。

消融实验

可视化

换脸效果swap因此,生成的图像似乎是两个域的随机混合,并且质量不高。然而,我们这项工作的主要目的是提高跨域人脸反欺骗的性能,并且当前生成的图像足以拥有跨域特征表示。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值