- 博客(90)
- 收藏
- 关注
原创 门窗对象检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“CAD object window door”的数据集,以支持对门窗对象检测系统的改进,特别是针对YOLOv8模型的训练与优化。该数据集专注于两个主要类别:门(door)和窗(window),这两个类别在建筑物的结构设计和空间利用中具有重要意义。通过精确识别和分类这些对象,能够为智能建筑、自动化监控以及增强现实等应用提供强有力的支持。“CAD object window door”数据集包含丰富的标注信息,旨在为深度学习模型提供高质量的训练样本。
2024-10-08 13:44:17 1362
原创 基站设备检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“BSNL”的数据集,旨在改进YOLOv8模型在基站设备检测系统中的表现。该数据集的设计和构建充分考虑了基站设备的多样性和复杂性,涵盖了16个不同的类别,这些类别不仅反映了基站设备的基本构成要素,还包括了与其功能和维护相关的多种组件。
2024-10-07 22:23:01 1015
原创 水上基础设施检测系统源码分享
数据集信息展示在现代计算机视觉领域,数据集的质量和多样性直接影响到模型的性能和泛化能力。为此,本研究采用了名为“BEWA_23082022”的数据集,以支持改进YOLOv8的水上基础设施检测系统。该数据集专注于水上环境中的关键基础设施,涵盖了六个主要类别,分别为:A.10、A.5、A_1、船只(boat)、系缆柱(bollard)和桥梁(bridge)。这些类别的选择反映了水上基础设施的多样性及其在实际应用中的重要性。
2024-10-07 17:26:04 1237
原创 球类物体检测系统源码分享
数据集信息展示在现代计算机视觉领域,物体检测技术的不断进步使得各种应用场景得以实现,尤其是在体育领域,球类物体的检测与识别显得尤为重要。本研究旨在改进YOLOv8模型,以提升其在球类物体检测任务中的性能。为此,我们构建了一个名为“Ball Object Detection”的数据集,专门用于训练和评估该系统的有效性。“Ball Object Detection”数据集包含五个类别的球类物体,具体包括:篮球、蓝色篮球、红色篮球、排球和足球。
2024-10-07 14:20:44 1210
原创 药物识别与分类系统源码分享
数据集信息展示在现代医学和药物管理领域,药物识别与分类的准确性和效率显得尤为重要。为此,我们构建了一个名为“AI Drug Analysis Service”的数据集,旨在为改进YOLOv8的药物识别与分类系统提供强有力的支持。该数据集专注于单一类别的药物,即“Pill”,以确保系统在特定领域内的高效性和准确性。“AI Drug Analysis Service”数据集包含大量经过精心挑选和标注的药物图像,这些图像涵盖了不同形状、颜色和大小的药丸。
2024-10-02 13:39:39 1572
原创 药品识别与分类系统源码分享
数据集信息展示在药品识别与分类的研究领域,数据集的质量和多样性直接影响到模型的训练效果和最终的应用性能。本研究采用的“8-pill”数据集,专门为改进YOLOv8模型在药品识别与分类任务中的表现而设计。该数据集包含了8个不同的类别,涵盖了多种常见药品和补充剂,旨在为模型提供丰富的训练样本,以提高其识别准确率和分类能力。“8-pill”数据集的类别包括:C、LIP、VINEGAR、ace、air、centrum、iron和mag。这些类别代表了不同类型的药品和营养补充剂,分别对应于不同的功能和用途。
2024-10-01 21:14:55 1311
原创 耳机检测系统源码分享
数据集信息展示在现代计算机视觉领域,耳机检测作为一个重要的应用场景,正逐渐受到研究者和开发者的关注。为此,我们构建了一个专门用于训练和改进YOLOv8耳机检测系统的数据集,命名为“yolov7_earphone”。该数据集旨在为耳机检测提供高质量的标注数据,帮助提升模型的准确性和鲁棒性。“yolov7_earphone”数据集包含了丰富的耳机图像样本,专注于单一类别的检测任务。数据集中仅包含一个类别,即“耳机”,这使得模型在训练过程中能够集中学习耳机的特征,从而在实际应用中实现更高的检测精度。
2024-09-28 13:21:54 1058
原创 木材检测系统源码分享
数据集信息展示在本研究中,我们使用的数据集名为“woodtotal-31-3”,该数据集专门为改进YOLOv8的木材检测系统而设计。数据集的构建旨在为木材检测提供高质量的训练样本,以提高模型在实际应用中的准确性和鲁棒性。该数据集包含一个类别,即“timber”,这是木材检测的核心目标。通过专注于这一单一类别,我们能够深入挖掘木材的各种特征,从而为YOLOv8模型的训练提供更为精准和高效的数据支持。“woodtotal-31-3”数据集的构建过程涉及了多种木材样本的收集和标注。
2024-09-28 11:01:41 962
原创 鳕鱼检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“cod_fish”的数据集,以支持对YOLOv8模型的改进,专注于鳕鱼的检测系统。该数据集专门针对鳕鱼这一特定类别进行构建,具有高度的针对性和专业性。数据集的类别数量为1,类别列表中仅包含“codfish”这一项。这种简化的类别设置使得模型在训练过程中能够集中精力于鳕鱼的特征提取与识别,避免了多类别干扰所带来的复杂性。“cod_fish”数据集的构建过程经过精心设计,旨在确保数据的多样性和代表性。
2024-09-27 22:14:31 1245
原创 电缆缺陷检测系统源码分享
数据集信息展示在现代工业生产中,电缆的质量与安全性至关重要,尤其是在电力、通信和交通等关键领域。为了提升电缆缺陷检测的效率与准确性,针对电缆缺陷的自动化检测系统的研究逐渐成为热点。在这一背景下,名为“cable123”的数据集应运而生,旨在为改进YOLOv8模型提供高质量的训练数据,以实现更为精准的电缆缺陷检测。“cable123”数据集专注于电缆缺陷的多样性,包含三种主要类别,分别用数字“0”、“1”和“2”进行标识。
2024-09-27 19:54:24 870
原创 泳池异常检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“Anamoli”的数据集,以改进YOLOv8的泳池异常检测系统。该数据集专门设计用于识别和分类泳池环境中的各种异常情况,涵盖了18个不同的类别。每个类别代表了一种特定的异常或目标,能够帮助系统更准确地识别潜在的安全隐患和异常行为,从而提高泳池监控的有效性和安全性。
2024-09-27 17:34:11 1194
原创 暴力与正常人体行为检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“violance-nonviolance”的数据集,以支持对暴力与正常人体行为的检测系统的改进,特别是针对YOLOv8模型的训练与优化。该数据集的设计旨在提供一个高质量的标注数据源,以便于机器学习模型在识别和分类人类行为时能够更准确地进行判断。数据集的类别数量为2,具体包括“NonViolence”(非暴力)和“Violence”(暴力)两大类。这种二分类的设置不仅简化了模型的训练过程,也使得行为检测的结果更加清晰明了。
2024-09-26 18:24:47 986
原创 水面巡检船垃圾漂浮物检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“trash_overfitting”的数据集,以支持改进YOLOv8的水面巡检船垃圾漂浮物检测系统的训练和测试。该数据集专注于特定类型的垃圾,即聚酯类塑料瓶(PET),并为该类别提供了丰富的标注信息。数据集的类别数量为1,具体类别为“PET”,这意味着我们将专注于识别和检测水面上漂浮的聚酯瓶,以提高系统在实际应用中的有效性和准确性。“trash_overfitting”数据集的构建旨在解决水面巡检过程中垃圾检测的挑战,尤其是在复杂环境下的表现。
2024-09-26 16:04:35 505
原创 交通标志与路面标识检测系统源码分享
数据集信息展示在现代智能交通系统的研究与应用中,交通标志与路面标识的准确检测是确保道路安全和提高交通效率的关键因素之一。为此,我们构建了一个名为“TrafficCombine”的数据集,旨在为改进YOLOv8的交通标志与路面标识检测系统提供高质量的训练数据。该数据集包含六个主要类别,分别是“Bumps”(减速带)、“Crosswalk”(人行横道)、“No-Uturn”(禁止掉头)、“Speedlimit”(限速标志)、“Stop”(停车标志)和“Trafficlight”(交通信号灯)。
2024-09-26 12:17:51 1244
原创 有威胁的武器武装检测系统源码分享
数据集信息展示在现代安全防护领域,威胁检测系统的研发至关重要,尤其是在公共场所和重要设施的安全保障中。为此,我们构建了一个名为“threat detection”的数据集,旨在为改进YOLOv8模型在有威胁的武器武装检测方面提供强有力的支持。该数据集专注于两类主要的威胁物品,分别是“FireArms”(火器)和“Sharp_object”(锐器),通过对这两类物品的精确识别与分类,提升模型在实际应用中的有效性和可靠性。
2024-09-25 23:00:50 1080
原创 垃圾回收级别分类识别系统源码分享
数据集信息展示在本研究中,我们采用了名为“Test”的数据集,以支持改进YOLOv8的垃圾回收级别分类识别系统的训练和评估。该数据集的设计旨在提高垃圾分类的准确性和效率,尤其是在日益增长的城市垃圾处理需求背景下。数据集包含七个主要类别,分别是:1-PET-PETE、2-PEHD-HDPE、3-PV、4-PELD-LDPE、5-PP、6-PS和7-Other。这些类别涵盖了现代生活中常见的塑料材料,能够为模型提供丰富的训练样本,以便更好地识别和分类不同类型的垃圾。
2024-09-25 20:40:25 1057
原创 甘蔗茎节检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“sugarcane stem”的数据集,以支持对甘蔗茎节的检测系统进行改进,特别是针对YOLOv8模型的训练和优化。该数据集专注于甘蔗茎节的特征提取与识别,旨在提升农业自动化和精准农业的应用效果。数据集的类别数量为1,具体类别为“internode”,即甘蔗的茎节部分。通过这一单一类别的专注,我们能够更深入地挖掘甘蔗茎节的形态特征与生长状态,为后续的检测算法提供更加精准的训练数据。
2024-09-25 18:20:05 959
原创 眼镜检测系统源码分享
数据集信息展示在计算机视觉领域,尤其是在物体检测任务中,数据集的质量和多样性对模型的性能至关重要。本研究所使用的数据集名为“Spectacles”,专门用于训练和改进YOLOv8眼镜检测系统。该数据集的设计旨在提供一个高效且精准的眼镜检测解决方案,以应对现实世界中眼镜种类繁多、外观各异的挑战。“Spectacles”数据集的类别数量为1,具体类别为“lunette - v1 2023-09-12 9-18am”。
2024-09-25 13:59:49 1171
原创 鞋类分类系统源码分享
数据集信息展示在本研究中,我们使用了名为“shoes”的数据集,以改进YOLOv8的鞋类分类系统。该数据集专注于鞋类物品的识别与分类,具有良好的代表性和多样性,能够有效支持深度学习模型的训练与评估。数据集的类别数量为2,具体包括“shoes”和“sneaker”两个类别。这一简单而清晰的分类体系使得模型在进行鞋类识别时能够更为精准地进行区分,进而提升分类的准确性和效率。“shoes”数据集的构建考虑到了现实世界中鞋类产品的多样性与复杂性。
2024-09-24 19:39:18 937
原创 座椅空置状态检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Seat”的数据集,旨在训练和改进YOLOv8模型,以实现高效的座椅空置状态检测。该数据集专注于两种主要类别:空椅子(emptychair)和满椅子(fullchair),共计包含两个类别(nc: 2)。这一简洁的类别设置使得模型能够在不同的场景中快速而准确地识别座椅的状态,从而为实际应用提供可靠的支持。“Seat”数据集的构建过程经过精心设计,确保了数据的多样性和代表性。数据集中包含了各种环境下的座椅图像,例如会议室、教室、餐厅等不同场景。
2024-09-24 17:18:59 1337
原创 电线杆上电气组件检测系统源码分享
项目参考AAAI Association for the Advancement of Artificial Intelligence项目来源AACV Association for the Advancement of Computer Vision研究背景与意义随着城市化进程的加快,电力基础设施的建设与维护显得尤为重要。电线杆作为电力传输系统的关键组成部分,其上所承载的电气组件的安全性和可靠性直接影响到电力供应的稳定性和安全性。传统的电气组件检测方法往往依赖人工巡检,效率低下且容易受到人为因素的影响,难
2024-09-24 14:58:36 980
原创 水印与标志检测系统源码分享
数据集信息展示在当今数字化时代,水印与标志的检测变得愈发重要,尤其是在保护知识产权和品牌形象方面。为此,我们构建了一个名为“repost-detection”的数据集,旨在为改进YOLOv8的水印与标志检测系统提供强有力的支持。该数据集专注于三种主要类别:标签(label)、标志(logo)和水印(watermark),这些类别的选择不仅反映了市场需求,也为研究者提供了丰富的训练和测试样本。“repost-detection”数据集的类别数量为三,具体包括:标签、标志和水印。
2024-09-24 12:38:12 1147
原创 俯卧撑动作起伏识别计数系统源码分享
数据集信息展示在本研究中,我们使用了名为“push up-detection”的数据集,以支持对俯卧撑动作的起伏识别和计数系统的改进。该数据集专门设计用于捕捉和分析俯卧撑这一特定运动的动态表现,旨在为运动科学、健身监测和智能健身设备的开发提供坚实的数据基础。数据集包含两个主要类别,分别是“push-downs”和“push-ups”,这两个类别的划分使得系统能够准确区分俯卧撑的不同阶段,从而实现更精确的动作识别与计数。
2024-09-24 10:17:54 1095
原创 字母与符号检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Project 2”的数据集,以改进YOLOv8的字母与符号检测系统。该数据集的设计旨在提供丰富的样本,以支持模型在多种条件下的训练和验证,确保其在实际应用中的高效性和准确性。数据集包含62个类别,涵盖了英文字母、数字以及多种符号的不同变体,具体类别包括字母的常规形式及其旋转形式、方向箭头、停止标志以及视觉标记等。首先,字母类别的设置极为全面,涵盖了从A到Z的所有字母,并且每个字母都提供了旋转版本。
2024-09-23 23:04:19 1042
原创 电动车车牌识别系统源码分享
数据集信息展示在现代智能交通系统中,电动车的车牌识别技术正日益成为研究的热点,尤其是在提升识别精度和速度方面。为此,本研究选用了名为“plate_dataset”的数据集,旨在训练和改进YOLOv8模型,以实现更高效的电动车车牌识别。该数据集的设计考虑了多种实际应用场景,包含了丰富的车牌字符信息,以便于模型在多样化的环境中进行学习和优化。“plate_dataset”包含35个类别,涵盖了数字和字母的组合,这些类别包括从0到9的数字以及从A到Z的字母。
2024-09-23 20:43:42 1257
原创 浮游生物检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Plankton detection”的数据集,以支持对浮游生物检测系统的改进,特别是针对YOLOv8模型的训练与优化。该数据集的设计旨在提供丰富且多样化的浮游生物样本,以便于模型在实际应用中能够准确识别和分类不同种类的浮游生物。数据集包含8个类别,分别标记为‘0’到‘7’,这些类别代表了不同类型的浮游生物,每个类别的样本数量和质量都经过精心挑选,以确保训练的有效性和模型的泛化能力。
2024-09-23 18:23:08 1371
原创 文章结构元素分析系统源码分享
数据集信息展示在本研究中,我们采用了名为“paper parts”的数据集,以支持对YOLOv8模型的改进,旨在提升其在学术论文结构元素分析中的表现。该数据集包含19个类别,涵盖了学术论文中常见的结构元素,具体包括:作者、章节、公式编号、公式、图例、图、脚注、内容列表标题、内容列表文本、页码、段落、参考文本、节、小节、次小节、表格标题、目录文本、表格以及标题。这些类别的选择反映了学术论文的基本构成,能够有效地帮助模型识别和分析论文中的各个部分。
2024-09-23 16:02:38 1393
原创 橙子质量检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“orangeeee”的数据集,以支持对橙子质量检测系统的改进,特别是针对YOLOv8模型的训练和优化。该数据集专门设计用于识别和分类橙子的质量,包含两大主要类别:‘orange_bad’和’orange_good’。这两类标签的设置不仅有助于模型学习如何区分优质橙子与劣质橙子,还为后续的应用提供了明确的目标,使得检测系统能够在实际场景中有效地执行质量评估。“orangeeee”数据集的构建过程经过精心设计,确保其涵盖了多样化的橙子样本,以提高模型的泛化能力。
2024-09-22 22:36:58 1335
原创 人脸遮挡检测系统源码分享
项目参考AAAI Association for the Advancement of Artificial Intelligence项目来源AACV Association for the Advancement of Computer Vision研究背景与意义随着人工智能技术的迅猛发展,计算机视觉领域在物体检测、图像识别等方面取得了显著的进展。其中,人脸检测作为计算机视觉的重要应用之一,广泛应用于安防监控、智能家居、社交媒体等多个领域。然而,在实际应用中,人脸检测面临着诸多挑战,尤其是人脸遮挡问题。遮
2024-09-22 15:34:57 1101
原创 管道物体计数系统源码分享
数据集信息展示在本研究中,我们采用了名为“object counter”的数据集,以改进YOLOv8的管道物体计数系统。该数据集专门设计用于物体计数任务,尤其是在复杂环境中对特定物体进行精确计数的应用场景。数据集的类别数量为1,类别列表中仅包含一个类别,标记为“0”。这一设计简化了模型的训练过程,使得研究者能够专注于特定物体的识别与计数,而不必处理多类别之间的干扰。“object counter”数据集的构建旨在提供高质量的标注数据,以便于训练深度学习模型进行物体检测和计数。
2024-09-22 12:47:07 927
原创 肺结节检测系统源码分享
数据集信息展示在肺结节检测领域,准确性和效率是关键的研究目标。为此,我们构建了一个名为“Nodule-detection”的数据集,旨在为改进YOLOv8模型提供高质量的训练数据。该数据集专注于肺结节的检测,特别是针对医学影像中的结节特征进行深入分析和学习。数据集的设计理念是为研究人员和开发者提供一个统一且标准化的基准,以推动肺结节检测技术的进步。“Nodule-detection”数据集的类别数量为1,具体类别为“nodule”。
2024-09-21 23:17:22 1388
原创 口腔检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“mouth”的数据集,以改进YOLOv8在口腔检测系统中的应用效果。该数据集专注于口腔区域的检测,旨在为相关的计算机视觉任务提供高质量的训练样本。数据集的类别数量为1,具体类别为“mouth”,这意味着所有的数据样本均围绕口腔的不同表现形式进行标注。这种单一类别的设计使得模型能够专注于口腔区域的特征提取,从而提高检测的准确性和效率。“mouth”数据集的构建过程充分考虑了多样性和代表性,确保所包含的图像能够覆盖不同的人群、年龄段以及口腔状态。
2024-09-21 11:57:28 1377
原创 猫咪检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“mickey finder”的数据集,以改进YOLOv8模型在猫咪检测任务中的性能。该数据集专注于猫咪这一特定类别,旨在为深度学习模型提供高质量的训练数据,从而提升其在实际应用中的准确性和鲁棒性。数据集的类别数量为1,唯一的类别为“cat”,这意味着所有的数据样本均围绕这一主题进行收集和标注。“mickey finder”数据集的构建过程经过精心设计,确保了数据的多样性和代表性。
2024-09-20 11:25:48 1373
原创 螺栓与散装物体检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“meikuang”的数据集,以改进YOLOv8在螺栓与散装物体检测系统中的性能。该数据集专门设计用于支持对特定物体的识别与分类,包含两类物体:螺栓(bolt)和散装物体(bulk)。这两类物体在工业生产和物流管理中具有重要的应用价值,因此,构建一个高效的检测系统对于提升生产效率和减少人工成本具有显著意义。“meikuang”数据集的构建过程遵循了严格的标准,以确保数据的多样性和代表性。
2024-09-20 00:24:38 1388
原创 轴承表面缺陷检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“manu_new_machine”的数据集,以训练和改进YOLOv8模型在轴承表面缺陷检测系统中的应用。该数据集专门针对工业制造过程中常见的轴承表面缺陷进行了精心构建,旨在提升缺陷检测的准确性和效率。数据集的设计考虑了多种实际应用场景,确保模型能够在真实环境中表现出色。
2024-09-19 21:48:34 1126
原创 人脸活体检测系统源码分享
数据集信息展示在现代计算机视觉领域,人脸活体检测技术的进步对于安全性和用户体验至关重要。为此,我们引入了名为“liveness_cam”的数据集,该数据集专门用于训练和改进YOLOv8模型,以实现高效、准确的人脸活体检测。该数据集的设计旨在涵盖两种主要类别:活体(live)和伪造(spoof),通过这两种类别的对比,模型能够学习到有效的特征,以识别真实的人脸与各种伪造手段之间的差异。“liveness_cam”数据集包含丰富的图像样本,这些样本经过精心挑选和标注,确保了数据的多样性和代表性。
2024-09-19 18:47:06 1319
原创 玩具车检测系统源码分享
项目参考AAAI Association for the Advancement of Artificial Intelligence项目来源AACV Association for the Advancement of Computer Vision研究背景与意义随着智能科技的迅猛发展,计算机视觉技术在各个领域的应用日益广泛,尤其是在物体检测和识别方面。玩具车作为儿童玩具市场的重要组成部分,其检测与识别技术的研究不仅具有重要的学术价值,也对实际应用具有深远的影响。传统的玩具车检测方法往往依赖于人工标注和特
2024-09-19 09:46:26 1147
原创 儿童与成人目标检测系统源码分享
数据集信息展示在目标检测领域,尤其是在儿童与成人的识别与分类任务中,数据集的构建与选择至关重要。本研究所采用的数据集名为“kids_adult”,其设计旨在为改进YOLOv8模型提供高质量的训练数据,以实现更精准的目标检测。该数据集的类别数量为2,具体类别包括“adult”(成人)和“kids”(儿童)。这一简单而有效的分类设置,使得模型能够专注于区分这两类目标,从而提升检测的准确性和效率。“kids_adult”数据集的构建考虑到了多样性与代表性,涵盖了不同年龄段、性别和种族的成人与儿童图像。
2024-09-18 23:12:31 1515
原创 手语识别系统源码分享
数据集信息展示在本研究中,我们采用了“Indian Sign Language Detection”数据集,以改进YOLOv8手语识别系统。该数据集专为手语识别任务而设计,涵盖了35个类别,具体包括数字和字母的手势,旨在为机器学习模型提供丰富的训练样本,以提高其对印度手语的识别能力。数据集中的类别包括从数字“1”到“9”,以及字母“A”到“Z”,最后还有一个额外的类别“c”,这些类别涵盖了日常交流中常用的手势符号。该数据集的构建经过精心设计,确保了样本的多样性和代表性。
2024-09-18 17:35:19 1375
原创 马匹行为识别系统源码分享
数据集信息展示在本研究中,我们采用了名为“Horse”的数据集,以支持改进YOLOv8的马匹行为识别系统的训练和测试。该数据集专注于马匹的行为分析,包含四个主要类别,分别是“Horse”、“horse-eating”、“horse-laying”和“horse-standing”。这些类别的选择不仅反映了马匹在自然环境中的多样化行为,也为算法的学习提供了丰富的样本和多样的场景。首先,数据集中的“Horse”类别作为基础类别,涵盖了马匹的整体形态和特征。
2024-09-17 23:10:41 1298
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人