1002 A+B for Polynomials

题目描述:

有两个多项式A和B,分别为两行,第一行的第一个数字是A多项式的项数,后面每两个数字分别为指数和系数。要求对这两个多项式相加,最后输出一个多项式,输出的多项式格式和输入的多项式相同,系数保留一位小数。


题目思路:

我们只需要把A和B中指数相同的项,系数相加就可以了,然后从大到小输出不为0的项


题目考点:

字典dict数据结构、zip函数、map函数、sorted函数的用法


题目踩坑:

① 根据0≤N​K​​ <⋯<N​2​​ <N​1​​ ≤1000此条件可知:

  • 指数是要从大到小排列的
  • 同一多项式的指数不会有相等的情况

② 输入的项相加后可能为0,系数为0的项不用输出
③ 当两个多项式相加为0时,最后只输出0
④ 系数都要保留一位小数


题目代码:

方法一:(笨方法,各种循环遍历,此方法测试点二一直不通过)

a_list = input().split(" ")
b_list = input().split(" ")
i = 1
j = 1
a_dict = {}
b_dict = {}
result_dict = {}
while i < len(a_list):
    a_dict.update({a_list[i]: a_list[i+1]})
    i = i+2

while j < len(b_list):
    b_dict.update({b_list[j]: b_list[j+1]})
    j = j+2

for x in a_dict.keys():
    b_coefficient = b_dict.get(x)
    if b_coefficient is None:
       result_dict.update({x: str(round(float(a_dict.get(x)), 1))})
    else:
        coefficient = round(float(b_coefficient) + float(a_dict.get(x)), 1)
        if coefficient != 0:
            result_dict.update({x: str(coefficient)})
        b_dict.pop(x)
if b_dict != {}:
    for y in b_dict.keys():
        result_dict.update({y: str(round(float(b_dict.get(y)), 1))})

result_dict1 = sorted(result_dict.items(), key=lambda x: x[0], reverse=True)

num = str(len(result_dict1))
result_list = [num]
for t in result_dict1:
    result_list.append(t[0])
    result_list.append(t[1])

print(" ".join(result_list))

方法二:(利用zip函数和for key in (a.keys() | b.keys()) :省去多余循环)

ins1 = input()
ins2 = input()
a = dict(zip(map(int, ins1.split()[1::2]), map(float, ins1.split()[2::2])))
b = dict(zip(map(int, ins2.split()[1::2]), map(float, ins2.split()[2::2])))
poly = {}

for key in (a.keys() | b.keys()):
    total = a.get(key, 0.0) + b.get(key, 0.0)
    if total != 0.0:
        poly[key] = total

poly = sorted(poly.items(), key=lambda x: x[0], reverse=True)
line = ' '.join(map(lambda x: '{:d} {:.1f}'.format(*x), poly))
k = len(poly)

if k:
    print(k, line)
else:
    print(0)

代码分析:

① zip()函数 – zip([iterable, …])

  • zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同
  • zip函数的返回值是一个zip对象,要用list,dict进行转换
a = [1, 2, 3]
b = [2, 3, 4]
c = [4, 5, 6, 7]
# 返回一个对象
zipped = zip(a, b)
 
# list() 转换为列表
print(list(zipped))
运行结果:
[(1, 2), (2, 3), (3, 4)]
 
# 元素个数与最短的列表一致
zipped = zip(a, c)
print(list(zipped))
print(type(zipped), zipped)
运行结果:
[(1, 4), (2, 5), (3, 6)]
<class 'zip'> <zip object at 0x000001C7C9814180> 
# zip对象可以转化为字典
name_list = ["bob", "jim", "james", "julie", "june"]
number_list = ["1", "2", "3", "4", "5"]
name_and_number = dict(zip(name_list, number_list))
print(name_and_number)
运行结果:
{'bob': '1', 'jim': '2', 'james': '3', 'julie': '4', 'june': '5'}

map()函数 – map(function, iterator1,iterator2 …iteratorN)

  • 功能:对一个序列中的所有元素进行function操作,返回包含每次 function 函数返回值的新列表(map对象),可以用list进行转换
  • function:要提供给map()的必须参数,它将应用于迭代器中所有可用的项目
  • iterator:一个可迭代的必须对象。 它可以是列表,元组等。我们还可以将多个迭代器对象传递给map()函数。
>>> def square(x) :         # 计算平方数
...     return x ** 2
...
>>> map(square, [1,2,3,4,5])    # 计算列表各个元素的平方
<map object at 0x100d3d550>     # 返回迭代器
>>> list(map(square, [1,2,3,4,5]))   # 使用 list() 转换为列表
[1, 4, 9, 16, 25]
>>> list(map(lambda x: x ** 2, [1, 2, 3, 4, 5]))   # 使用 lambda 匿名函数
[1, 4, 9, 16, 25]
>>>

sorted()函数 --sorted(iterable,key=None, reverse=False)

  • sorted()函数可以对所有可迭代的对象进行排序操作
  • iterable:可迭代对象
  • key:通过这个参数可以自定义排序逻辑
  • reverse:指定排序规则,True为降序,False为升序(默认)。
  • sorted()函数返回重新排序的列表,与sort()函数的区别在于sort()函数是list列表中的函数,而sorted()函数可以对所有可迭代对象进行排序操作。并且用sort()函数对列表排序时会影响列表本身,而sorted()函数则不会
  • sorted()函数虽然可以处理所有可迭代的对象,例如集合、元组、数组,但是输出结果仍然是一个列表。所以如果返回的对象需要匹配输入类型,那么需要将转化为新类型
list1 = [('david', 90), ('mary',90), ('sara',80),('lily',95)]
>>> sorted(list1,key = lambda list1: list1[0])
[('david', 90), ('lily', 95), ('mary', 90), ('sara', 80)]
>>> sorted(list1,key = lambda list1: list1[1])
[('sara', 80), ('david', 90), ('mary', 90), ('lily', 95)]
students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10),]  
sorted(students, key=lambda student : student[2])   # sort by age  
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]  
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,以下是关于多项式加法的解答: 多项式是一种数学表达式,其中包含了一个或多个变量的项,每个项包括了一个系数和指数。多项式的加法是将两个多项式相加,使得同一指数的项相加并合并同类项。 例如,考虑以下两个多项式: a = 3x^2 + 2x + 1 b = 5x^3 + 2x^2 - 3x + 4 它们的和为: a + b = 5x^3 + 5x^2 - x + 5 为了实现多项式加法,我们可以使用类似于整数加法的算法。首先,我们按照指数从高到低的顺序将两个多项式的项进行排列,并合并同类项。然后,将同一指数的项的系数相加,并创建一个新的多项式来表示它们的和。 以下是一个用 Python 实现多项式加法的示例代码: ```python def add_polynomials(a, b): result = {} for exponent, coefficient in a.items(): result[exponent] = coefficient + result.get(exponent, 0) for exponent, coefficient in b.items(): result[exponent] = coefficient + result.get(exponent, 0) return {k: v for k, v in sorted(result.items(), reverse=True)} ``` 在这个函数中,我们使用一个字典来表示多项式。字典的键是多项式中每个项的指数,而值是该项的系数。我们首先遍历多项式 a 的每个项,并将其系数添加到结果字典中相应指数的项中。然后,我们再遍历多项式 b 的每个项,并将其系数添加到结果字典中相应指数的项中。最后,我们将结果字典按照指数从高到低的顺序排序,并返回结果。 例如,我们可以使用以下代码来测试上面的函数: ```python a = {2: 3, 1: 2, 0: 1} b = {3: 5, 2: 2, 1: -3, 0: 4} print(add_polynomials(a, b)) # 输出:{3: 5, 2: 5, 1: -1, 0: 5} ``` 这个例子中,我们将多项式 a 和 b 传递给 `add_polynomials` 函数,并打印函数的返回值。函数返回的结果是一个字典,其中包含了相加后的多项式的各项系数。 希望这可以回答你的问题! ### 回答2: 我们考虑两个多项式P(x)和Q(x),并给予它们各自的次数a和b。那么,首先我们要确定它们的乘积,也就是P(x)乘以Q(x)。我们可以通过分配律将乘积展开,得到一个系数为c_i的新多项式R(x): P(x) * Q(x) = R(x) = c_0 + c_1x + c_2x^2 + ... + c_{a+b}x^{a+b} 其中,c_i表示x的i次项的系数。为了计算出这些系数,我们需要对所有次数小于或等于a+b的i进行求和。具体来说,我们可以使用下面这个公式: c_i = sum(j=0 to i) P(j) * Q(i-j) 也就是说,第i项的系数是将第一个多项式中次数小于或等于j的项和第二个多项式中次数等于i-j的项相乘,并且对所有j求和。我们可以使用循环来计算这些系数。 需要注意的是,由于两个非零多项式的乘积的次数至少为a+b,因此我们需要为求和循环的上界设置一个适当的值。具体来说,可以将循环的上界设置为a+b,这样就能保证所有的系数都会被计算。此外,如果某个系数为0,则可以将它省略掉,以减少计算量。 在实现时,还需要注意多项式乘法中的一些细节。例如,当某个多项式的系数为0时,我们可以假定它的所有次数都对应了一个系数为0的项。此外,我们需要考虑多项式乘法的精度,以避免出现浮点数误差。具体来说,可以使用一些特殊的技巧来避免浮点数误差,例如将系数表示为有理数,或者使用任意精度计算库。 总之,多项式乘法是非常基础的数学问题,也是很多算法和应用程序的核心部分。通过合理地选择算法和编写高效的代码,我们可以在计算多项式乘法时获得比较优秀的性能。 ### 回答3: 题意: 给定两个多项式 $A(x)$ 和 $B(x)$,请求出它们的乘积 $C(x)$ 思路: 多项式乘法非常简单,就是按照手算乘法的规则将每一项相乘然后相加。但是对于两个多项式相乘,需要循环枚举每一项相乘,最终将结果相加。如果直接按照手算乘法来做会有很多重复的计算,因此需要使用一些技巧来优化计算过程。下面给出两种常见的优化方法: 方法一:常规乘法过程 对于两个多项式 $A(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n$ 和 $B(x) = b_0 x^0 + b_1 x^1 + ... + b_m x^m$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x) = c_0 x^0 + c_1 x^1 + ... + c_{n+m} x^{n+m}$$ 其中 $c_k$ 是 $A(x)$ 中所有次数为 $i$ 的项和 $B(x)$ 中所有次数为 $k-i$ 的项的乘积之和,即 $$c_k = \sum_{i=0}^{k} a_i b_{k-i}$$ 对于每一个 $k$,需要循环枚举 $i$ 的值,这样时间复杂度就是 $O(nm)$,无法通过本题。 方法二:多项式快速幂 快速幂是一种用来计算 $a^n$ 的算法,可以将计算次数从 $O(n)$ 优化到 $O(\log n)$,非常高效。对于两个多项式 $A(x)$ 和 $B(x)$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x)$$ 令 $A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}}, B(x) = B_0(x) + B_1(x) x^{\frac{n}{2}}$,其中 $n$ 是 $A(x)$ 和 $B(x)$ 最高次项次数加一并且是 $2$ 的幂次方,$A_0(x)$ 和 $B_0(x)$ 是 $A(x)$ 和 $B(x)$ 中次数不大于 $\frac{n}{2}$ 的项组成的多项式,$A_1(x)$ 和 $B_1(x)$ 是 $A(x)$ 和 $B(x)$ 中次数大于 $\frac{n}{2}$ 的项组成的多项式,即 $$A(x) = A_0(x) + x^{\frac{n}{2}} A_1(x)$$ $$B(x) = B_0(x) + x^{\frac{n}{2}} B_1(x)$$ 则有 $$C(x) = A(x) \cdot B(x) = A_0(x) B_0(x) + x^n A_1(x) B_1(x) + x^{\frac{n}{2}} (A_0(x) B_1(x) + A_1(x) B_0(x))$$ 我们可以首先递归计算以下三个多项式: $$C_0(x) = A_0(x) \cdot B_0(x)$$ $$C_1(x) = A_1(x) \cdot B_1(x)$$ $$C_2(x) = (A_0(x) + A_1(x)) \cdot (B_0(x) + B_1(x))$$ 然后将它们合并成最终结果,即 $$C(x) = C_0(x) + x^n C_1(x) + x^{\frac{n}{2}} (C_2(x) - C_0(x) - C_1(x))$$ 这样可以将时间复杂度优化到 $O(n \log n)$,可以通过本题。 AC CODE:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值