高中数学:指数、对数、幂函数综合(拔高)

本文介绍了IT技术中的重要函数概念,包括奇偶性判断、对称性应用、函数求和技巧、不等式解法以及恒成立问题的解决策略。重点讲解了如何利用对称性和函数变换求解涉及对称中心、对称轴的问题,以及分离参数法在最值问题中的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、需要掌握的重要函数

1、第一组(记住)

在这里插入图片描述
例题
1、判断奇偶性
2、代值定象限
在这里插入图片描述

2、第二组(记住)

以下几个函数都是奇函数
在这里插入图片描述

3、常用知识点

1、找对称中心或对称轴

上加下减,左加右减
在这里插入图片描述在这里插入图片描述

2、奇偶函数组合后的奇偶性

在这里插入图片描述

3、NB公式(处理中心对称图像的求和问题)

在这里插入图片描述

4、函数不等式解法

在这里插入图片描述

5、最值判断

在这里插入图片描述

二、题型汇总

1、求和问题

一般解题思路:

1、判断奇偶性
2、找对称中心或对称轴
3、必要时候,需要对函数式换元变形
4、NB公式
换元后,需要重新计算定义区间
注:在定义区间D上,如果该函数有对称中心或者有对称轴,那么,一定可以通过换元,将函数变成>奇函数或者偶函数。

例题1

一对关于对称中心对称的点求和
在这里插入图片描述

例题2

N对关于对称中心对称的点求和
在这里插入图片描述

2、解不等式

一般解题思路:

1、对称性:找对称中心或对称轴
2、单调性(用于去f)
3、解不等式

例题1

在这里插入图片描述

例题2

在这里插入图片描述

3、恒成立求参数

一般解题思路:
所有恒成立问题,都可以转化为最值问题(分离参数法)
函数式变形(平方差公式、换元法等)
确定变形后的函数式定义域

例题
在这里插入图片描述

三、总结

1、如果是f外含参数不等式,则把自变量代入f(x),得出新的不等式
利用分离参数法,得出一个新的函数式,求解该函数的最值即可。

2、如果f外不含参数,则
直接计算
f(x)+f(-x)或f(x)-f(-x)
找出对称中心或者对称轴

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值