最小堆原理与实现

基本概念:

1、完全二叉树:若二叉树的深度为h,则除第h层外,其他层的结点全部达到最大值,且第h层的所有结点都集中在左子树。

2、满二叉树:满二叉树是一种特殊的的完全二叉树,所有层的结点都是最大值。

定义:
1、堆是一颗完全二叉树;

2、堆中的某个结点的值总是大于等于(最大堆)或小于等于(最小堆)其孩子结点的值。

3、堆中每个结点的子树都是堆树。

最大堆,最小堆类似,以下以最小堆为例进行讲解。

最小堆是满足以下条件的数据结构:

它是一棵完全二叉树;
所有父节点的值小于或等于两个子节点的值;


TOP K问题 :Top K指的是从n(很大)个数据中,选取最大(小)的k个数据。例如学校要从全校学生中找到成绩最高的500名学生,再例如某搜索引擎要统计每天的100条搜索次数最多的关键词。

 

堆排序解决TOP K

对于TOPK问题,解决方法有很多:

方法一:对源数据中所有数据进行排序,取出前K个数据,就是TopK。

但是当数据量很大时,只需要k个最大的数,整体排序很耗时,效率不高。

方法二:维护一个K长度的数组a[],先读取源数据中的前K个放入数组,对该数组进行升序排序,再依次读取源数据第K个以后的数据,和数组中最小的元素(a[0])比较,如果小于a[0]直接pass,大于的话,就丢弃最小的元素a[0],利用二分法找到其位置,然后该位置前的数组元素整体向前移位,直到源数据读取结束。

这比方法一效率会有很大的提高,但是当K的值较大的时候,长度为K的数据整体移位,也是非常耗时的。

对于这种问题,效率比较高的解决方法是使用最小堆。
 

最小堆思路

最小堆(小根堆)是一种数据结构,它首先是一棵完全二叉树,并且,它所有父节点的值小于或等于两个子节点的值。

最小堆的存储结构(物理结构)实际上是一个数组。如下图:

在这里插入图片描述

堆有几个重要操作:

BuildHeap:将普通数组转换成堆,转换完成后,数组就符合堆的特性:所有父节点的值小于或等于两个子节点的值。

Heapify(int i):当元素i的左右子树都是小根堆时,通过Heapify让i元素下降到适当的位置,以符合堆的性质。

回到上面的取TopK问题上,用最小堆的解决方法就是:先去源数据中的K个元素放到一个长度为K的数组中去,再把数组转换成最小堆。再依次取源数据中的K个之后的数据和堆的根节点(数组的第一个元素)比较,根据最小堆的性质,根节点一定是堆中最小的元素,如果小于它,则直接pass,大于的话,就替换掉跟元素,并对根元素进行Heapify,直到源数据遍历结束。

 

最小堆解决TOPK

最小堆的实现:

public class MinHeap
{
	// 堆的存储结构 - 数组
	private int[] data;
	
	// 将一个数组传入构造方法,并转换成一个小根堆
	public MinHeap(int[] data)
	{
		this.data = data;
		buildHeap();
	}
	
	// 将数组转换成最小堆
	private void buildHeap()
	{
		// 完全二叉树只有数组下标小于或等于 (data.length) / 2 - 1 的元素有孩子结点,遍历这些结点。
		// *比如上面的图中,数组有10个元素, (data.length) / 2 - 1的值为4,a[4]有孩子结点,但a[5]没有*
        for (int i = (data.length) / 2 - 1; i >= 0; i--) 
        {
        	// 对有孩子结点的元素heapify
            heapify(i);
        }
    }
	
	private void heapify(int i)
	{
		// 获取左右结点的数组下标
        int l = left(i);  
        int r = right(i);
        
        // 这是一个临时变量,表示 跟结点、左结点、右结点中最小的值的结点的下标
        int smallest = i;
        
        // 存在左结点,且左结点的值小于根结点的值
        if (l < data.length && data[l] < data[i])  
        	smallest = l;  
        
        // 存在右结点,且右结点的值小于以上比较的较小值
        if (r < data.length && data[r] < data[smallest])  
        	smallest = r;  
        
        // 左右结点的值都大于根节点,直接return,不做任何操作
        if (i == smallest)  
            return;  
        
        // 交换根节点和左右结点中最小的那个值,把根节点的值替换下去
        swap(i, smallest);
        
        // 由于替换后左右子树会被影响,所以要对受影响的子树再进行heapify
        heapify(smallest);
    }
	
	// 获取右结点的数组下标
	private int right(int i)
	{  
        return (i + 1) << 1;  
    }   
 
	// 获取左结点的数组下标
    private int left(int i) 
    {  
        return ((i + 1) << 1) - 1;  
    }
    
    // 交换元素位置
    private void swap(int i, int j) 
    {  
        int tmp = data[i];  
        data[i] = data[j];  
        data[j] = tmp;  
    }
    
    // 获取对中的最小的元素,根元素
    public int getRoot()
    {
    	    return data[0];
    }
 
    // 替换根元素,并重新heapify
	public void setRoot(int root)
	{
		data[0] = root;
		heapify(0);
	}
}

利用最小堆获取TopK:

public class TopK
{
	public static void main(String[] args)
	{
		// 源数据
		int[] data = {56,275,12,6,45,478,41,1236,456,12,546,45};
		
// 获取Top5
		int[] top5 = topK(data, 5);
		
		for(int i=0;i<5;i++)
		{
			System.out.println(top5[i]);
		}
	}
	
	// 从data数组中获取最大的k个数
	private static int[] topK(int[] data,int k)
	{
		// 先取K个元素放入一个数组topk中
		int[] topk = new int[k]; 
		for(int i = 0;i< k;i++)
		{
			topk[i] = data[i];
		}
		
		// 转换成最小堆
		MinHeap heap = new MinHeap(topk);
		
		// 从k开始,遍历data
		for(int i= k;i<data.length;i++)
		{
			int root = heap.getRoot();
			
			// 当数据大于堆中最小的数(根节点)时,替换堆中的根节点,再转换成堆
			if(data[i] > root)
			{
				heap.setRoot(data[i]);
			}
		}
		
		return topk;
}
}

最小堆的删除操作

前面在介绍最小堆解决TOPK问题的时候,已经涉及到建堆、添加元素的过程,接下来介绍最小堆的删除过程。

操作原理是:当删除节点的数值时,原来的位置就会出现一个孔,填充这个孔的方法就是,
把最后的叶子的值赋给该孔并下调到合适位置,最后把该叶子删除。

如图中要删除72,先用堆中最后一个元素来35替换72,再将35下沉到合适位置,最后将叶子节点删除。
  “结点下沉”

在这里插入图片描述

### 回答1: 图的最短路径算法指的是在一张带权图中,求出两个结点之间的最短路径。常见的最短路径算法有 Dijkstra 算法、贝尔曼-福德算法(Bellman-Ford algorithm)、弗洛伊德算法(Floyd algorithm)等。 Dijkstra 算法是一种贪心算法,它的基本思路是从起点开始,每次找出距离起点最近的未标记点并标记,然后更新其他点到起点的距离。实现时,可以使用堆来优化时间复杂度。 贝尔曼-福德算法是一种动态规划算法,它的基本思路是每次求出从起点到每个点的最短路径,然后从这些最短路径中求出更优的解。实现时,可以使用数组来存储每个点到起点的距离,然后每次更新数组中的值。 弗洛伊德算法是一种多源最短路径算法,它的基本思路是枚举所有点对之间的最短路径,然后从这些最短路径中求出更优的解。实现时,可以使用数组来存储点对之间的最短路径长度,然后每次更新数组中的值。 最小生成树算 ### 回答2: 图的最短路径算法是用于找到图中两个顶点之间具有最小权重的路径的算法。其中最经典的算法是Dijkstra算法和Bellman-Ford算法。 Dijkstra算法的原理是通过逐步扩展路径来找到从一个起点到其他所有顶点的最短路径。该算法维护一个距离表,记录起点到每个顶点的当前最短距离。算法从起点开始,每次选择当前距离最小的顶点进行扩展,并更新距离表。直到到达目标顶点或所有顶点都被扩展完成。Dijkstra算法使用了贪心的策略,每次都选择当前最优的顶点进行扩展,保证路径一直是最短的。 Bellman-Ford算法的原理是通过进行多轮松弛操作来找到从一个起点到其他所有顶点的最短路径。该算法首先初始化距离表,将起点距离设置为0,其他顶点距离设置为无穷大。接下来进行多轮松弛操作,每轮都对图的所有边进行松弛操作,即尝试通过当前边缩短起点到终点的距离。重复进行多轮松弛操作直到没有可更新的路径。Bellman-Ford算法可以处理含有负权边的图。 最小生成树算法是用于找到图中连接所有顶点的子图,并且保证子图的边权和最小的算法。其中最经典的算法是Prim算法和Kruskal算法。 Prim算法的原理是从一个起始顶点开始,每次选择一个和当前子图相连的顶点中权值最小的边,并将该边加入最小生成树中。重复该过程直到所有顶点都被加入最小生成树。 Kruskal算法的原理是将图的所有边进行排序,然后从最小的边开始逐个加入最小生成树,但是要保证加入的边不会导致形成环。通过维护一个并查集数据结构来判断两个顶点是否在同一个连通分量中。 这些算法可以通过不同的数据结构和优化策略进行实现。例如,可以使用堆来加速Dijkstra算法和Prim算法中选择最小边的过程。另外,还可以使用动态规划等方法对这些算法进行优化,减少时间复杂度。 ### 回答3: 图的最短路径和最小生成树算法是图论中两个重要的算法。图是由一些顶点和边组成的集合,最短路径算法用于找到两个顶点之间的最短路径,最小生成树算法用于找到一个连通图的生成树,使得生成树的边权重之和最小。 最短路径算法中,Dijkstra算法是比较常用的方法。它从一个起点出发,逐步扩展到其他顶点,通过贪心策略选择当前路径权重最小的顶点进行扩展。在Dijkstra算法中,需要维护一个距离数组来记录起点到各个顶点的当前最短路径长度,并使用一个优先队列来选择下一个要扩展的顶点,直到找到终点或所有顶点都被扩展。 最小生成树算法中,Prim算法和Kruskal算法是两种常见的方法。Prim算法从一个起始顶点开始,每次选择与当前生成树相连的边中权重最小的边,并将其连接的顶点加入生成树中,直到所有顶点都被加入。Kruskal算法则是先将所有边按照权重从小到大进行排序,然后从最小权重的边开始,逐步加入生成树中,直到生成树中的边数为顶点数减一。 实现最短路径算法和最小生成树算法需要根据图的具体表示方式进行编程。一般来说,我们可以使用邻接矩阵或邻接表来表示图,并在此基础上实现算法。在计算最短路径时,需要注意处理负权边和处理无连接的情况。在计算最小生成树时,需要注意处理图不连通的情况。 总之,最短路径算法和最小生成树算法是解决图论问题的重要工具,通过选择顶点和边的策略,可以找到图中最短路径和最小生成树。在实际应用中,这两个算法具有广泛的应用,比如网络路由、电力传输等领域。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值