使用numpy处理图片——缩放图片

大纲

缩放图片是让图片丢失部分像素,从而导致图片失真。一种比较简单的方法就是抽取法。比如如果我们要将照片在宽度上缩小50%,则可以在第二维度上每隔2个像素取一个像素来保存;类似的,如果我们希望在高度上缩小50%,则可以在第一维度上每隔2个像素取一个像素保存。

import numpy as np
import PIL.Image as Image

img = Image.open('the_starry_night.jpg')
data = np.array(img)

compressX = data[:,::2]
compressY = data[::2,:]

compressXImg = Image.fromarray(compressX)
compressXImg.save('compressx.png')

compressYImg = Image.fromarray(compressY)
compressYImg.save('compressy.png')

以compressX = data[:,::2]为例。第一个“:”表示对所有第一维度(高度)上的数组都遍历到,“::2”是指对第二个维度上每隔2个像素取一个。
我们看下效果:
原图
在这里插入图片描述

宽度缩放(第二维度)
在这里插入图片描述

高度缩放(第一维度)

在这里插入图片描述

代码地址

https://github.com/f304646673/numpy-example/tree/main/compress

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

breaksoftware

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值