pandas.describe()输出参数含义

本文详细介绍了使用describe()函数进行数据统计分析的方法,包括非空值总数、平均值、方差、分位数等关键指标的计算及意义,特别解析了分位数的概念及其计算公式,并通过实例演示了如何计算25%分位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如下图,调用describe()函数时输出如下函数:

1.count:非空值总数

2.mean:非空值的平均值

3.std:方差

4.min:最小值

5. 25%25%分位数

6. 50%:50%分位数(中位数)

7. 75%:  75%分位数

8.max: 最大值

9.dtype: 数据类型


 

对分位数的解释:查阅得如下资料:

            分位值是随机变量的特征数之一。将随机变量分布曲线与X轴包围的面积作n等分,得n—1个值(X_1、X_2……X_(n-1)),这些值称为n分位值。参数统计中常常用到分位值这一概念。

            简单来说就是把数据按从小到大顺序排列后,位置前x%的数的值。

计算公式:Px=L+i╱fx(n*x%-FL)

具体理解较为麻烦,按下不表。通俗理解为:将数据之间的间隔数除以100,乘以分位数值+1,得出该分位数在哪两个数之间,将较小的数加上两数差值与小数位乘积,即得该分位数。

例子:

  • 步骤1:得出四分位间。

    附表中有14个数据,共13个间隔,则四分位间为13/4=3.25

  • 步骤2:计算25分位值。

    第一个四分位值(即25分位值)=第(1+3.25)个数的数字,即第4个数字和第5个数字之间的0.25位置处,即:25+(36-25)*0.25=27.75。


其他参数含义:

1.unique: 唯一值数

2.top: 频数最高者

3.freq: 最高频数

<think>嗯,用户问的是关于series.describe()的问题。首先,我需要回忆一下Pandas库里的Series结构,以及describe()方法的作用。记得这个方法主要是用来生成描述性统计信息,总结数据集中的中心趋势、离散程度和分布形态。不过具体包含哪些统计量呢? 首先,describe()默认情况下会计算count、mean、std、min、25%、50%、75%以及max这些统计量。对于数值型数据,它会输出这些统计值。如果是非数值型的数据,比如字符串或者分类数据,describe()的行为会有所不同,可能会显示count、unique、top和freq等。 然后,我需要考虑用户可能的应用场景。用户可能有一个Series,想要快速了解数据的分布情况,比如平均值、标准差、四分位数等。可能他们刚接触数据分析,需要快速查看数据的基本统计特征,或者检查数据是否存在异常值,比如最大值或最小值是否合理。 接下来,我需要解释每个统计量的含义。比如count显示非空值的数量,mean是平均值,std是标准差,min和max是极值,25%、50%、75%是四分位数。对于非数值数据,unique显示有多少个不同的值,top是最常出现的值,freq是top值出现的次数。 还需要提到include和exclude参数,这些参数可以控制包含或排除某些数据类型。例如,使用include='all'会强制显示所有可能的统计量,即使对于数值型数据也会显示unique、top等,但可能会有NaN值。 另外,percentiles参数可以用来指定输出的百分位数,比如用户想要看到10%和90%的分位数,可以通过这个参数调整。 然后,给出一个代码示例,展示如何创建Series并应用describe()方法。比如创建一个数值型Series和一个非数值型Series,分别调用describe(),展示不同的输出结果。 最后,要想到用户可能存在的疑问,比如如何处理缺失值,describe()是否会排除NaN,或者如何自定义输出的统计量,这时候就需要在解释中提及这些点。 总结一下,回答需要涵盖describe()的作用、默认行为、参数调整、不同数据类型的处理,以及示例代码。然后根据这些内容,提出相关问题,比如统计量含义、处理非数值数据、参数使用、缺失值处理等。</think><< `series.describe()` 是 Pandas 库中用于生成描述性统计信息的方法,适用于 Series 或 DataFrame。它会返回以下统计指标(根据数据类型不同,输出可能略有差异): ### **默认输出(针对数值型数据)** 1. **count**:非空值的数量 2. **mean**:平均值 3. **std**:标准差 4. **min**:最小值 5. **25%**:第一四分位数 6. **50%**:中位数(第二四分位数) 7. **75%**:第三四分位数 8. **max**:最大值 ### **示例代码** ```python import pandas as pd # 创建数值型 Series s = pd.Series([1, 2, 3, 4, 5, None, 7, 8, 9]) print(s.describe()) ``` 输出结果: ``` count 8.000000 mean 4.857143 std 2.911676 min 1.000000 25% 3.000000 50% 4.500000 75% 7.250000 max 9.000000 dtype: float64 ``` ### **非数值型数据(如字符串或分类数据)** 对于非数值型数据,`describe()` 会返回: 1. **count**:非空值的数量 2. **unique**:唯一值的数量 3. **top**:出现频率最高的值 4. **freq**:最高频值的出现次数 ```python s = pd.Series(["apple", "banana", "apple", "orange", None]) print(s.describe()) ``` 输出结果: ``` count 4 unique 3 top apple freq 2 dtype: object ``` ### **关键参数** 1. **`include` 和 `exclude`** - 指定包含或排除某些数据类型(例如 `include='all'` 强制显示所有统计量)。 ```python s.describe(include='all') ``` 2. **`percentiles`** - 自定义输出的百分位数(例如 `percentiles=[0.1, 0.9]`)。 ```python s.describe(percentiles=[0.1, 0.9]) ``` ### **底层原理** - `describe()` 默认跳过 `NaN` 值进行计算。 - 对数值型数据使用 `numpy` 的统计函数(如 `mean`, `std`)。 - 对非数值型数据统计唯一值和频率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值