博弈问题之三种基础博弈小结

博弈论:

·博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支, 博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。

一、基础博弈:

(一)巴什博弈:

只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。

这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。

例题:

HDU2149 Public Sale

题意中文我就不多说了,自己看。这是一个典型的巴什博弈,只要m%(n+1)==0就是后手赢。难点在于先手赢的情况是要输出所有可能的第一次出价情况。需要判断n是否大于等于m,如果n>=m则m~n的所有数都是符合情况的,而m>n时,第一次取的是m除以(n+1)的余数,因为只有让后手者保持(n+1)的倍数才能先手必胜。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int n,m,i;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        if(m%(n+1)==0)
        {
            printf("none\n");
        }
        else
        {
            if(m<=n)
            {
                printf("%d",m);
                FOR(m+1,n,i)
                {
                    printf(" %d",i);
                }
                printf("\n");
            }
            else
            {
                printf("%d\n",m%(n+1));
            }
        }
    }
    return 0;
}

HDU2188 悼念512汶川大地震遇难同胞——选拔志愿者

这题给人一种中国正能量,必做的巴什博弈题。思路一样,n%(m+1)==0后手必胜,否则先手必胜。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int n,m,t;
    RD(t);
    while(t--)
    {
        RD(n);
        RD(m);
        if(n%(m+1)==0)
        {
            printf("Rabbit\n");
        }
        else
        {
            printf("Grass\n");
        }
    }
    return 0;
}


POJ2368 Buttons

巴什博弈的变形,可能不太看出来的这是一个巴什博弈,题意是给你一个k,让你求出最小的l使得k%(l+1)==0。。。这下就有点明显了,之前都是问你先手还是后手,这次问你的是取最大的n的最小情况。思路:求出k的所有因数,从小到大排序后,输出第一个大于2的数减1,如果没有输出0。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int k,i,j,a[10001],f;
    while(scanf("%d",&k)!=EOF)
    {
        mem(a,0);
        j=0;
        for(i=1; i*i<=k; ++i)
        {
            if(k%i==0)
            {
                a[j++]=i;
                a[j++]=k/i;
            }
        }
        sort(a,a+j);
        f=0;
        For(0,j,i)
        {
            if(a[i]>2)
            {
                f=1;
                printf("%d\n",a[i]-1);
                break;
            }
        }
        if(f==0)
        {
            printf("0\n");
        }
    }
    return 0;
}


(二)威佐夫博奕:

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有如下三条性质:
1、任何自然数都包含在一个且仅有一个奇异局势中。由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1成立。
2、任意操作都可将奇异局势变为非奇异局势。事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3、采用适当的方法,可以将非奇异局势变为奇异局势。
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b  – bk个物体,即变为奇异局势;如果 a = ak ,  b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – aj 即可。
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。


例题:

POJ1067 取石子游戏

典型的威佐夫博弈,和威佐夫博弈提到的例子一样,直接定义做就行。判断两堆中较小堆数量是否与两堆数量差值乘以(1+√5)/2相等,若相等就是先手必输,反之先手必胜。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int a,b,x;
    double c=(sqrt(5.0)+1.0)/2.0;
    while(scanf("%d%d",&a,&b)!=EOF)
    {
        x=abs(a-b);
        x=x*c;
        if(x==min(a,b))
        {
            printf("0\n");
        }
        else
        {
            printf("1\n");
        }
    }
    return 0;
}

HDU2177 取(2堆)石子游戏

题目要求判断是先手还是后手胜利,如果先手胜利,需要输出胜利情况先第一次取石子后两堆石子的情况。这就是一个找下一个奇态局势的题目。首先要判断的是两堆同时减去一个数,因为两堆差值不变,还是奇态局势,然后再for循环查找a和b之间,a以内的减去得到奇态局势的数。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int a,b,x,y,i;
    double c=(sqrt(5.0)+1.0)/2.0;
    while(1)
    {
        RD(a);
        RD(b);
        if(a==0&&b==0)
        {
            break;
        }
        x=b-a;
        x=x*c;
        if(x==a)
        {
            printf("0\n");
        }
        else
        {
            printf("1\n");
            if(x<a)
            {
                printf("%d %d\n",x,b-a+x);
            }
            for(i=b;i>=a;--i)
            {
                y=(i-a)*c;
                if(y==a)
                {
                    printf("%d %d\n",a,i);
                    break;
                }
            }
            for(i=a;i>=0;--i)
            {
                y=(a-i)*c;
                if(y==i)
                {
                    printf("%d %d\n",i,a);
                    break;
                }
            }
        }
    }
    return 0;
}

(三)尼姆博弈:

有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。
计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:
1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。
任何奇异局势(a,b,c)都有a(+)b(+)c =0。
如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

例题:

POJ2234 Matches Game

一道最简单的尼姆博弈题,与内容上说的例子一样。只需要简单异或就行了,最后判断是否为零,若是零就是后手必胜,反之先手。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int t,ans,x;
    while(scanf("%d",&t)!=EOF)
    {
        ans=0;
        while(t--)
        {
            RD(x);
            ans^=x;
        }
        if(ans==0)
        {
            printf("No\n");
        }
        else
        {
            printf("Yes\n");
        }
    }
    return 0;
}

POJ2975 Nim

题意:和尼姆博弈的内容一样,只是如果是先手胜的话就输出能赢的方法总数。思路:首先是将所有石堆的石子数量异或一下得到数值判断能否获胜,若能获胜,在再用该数值与各石堆数量分别异或,这就是得到了取走多少石子能让该堆石子变为必败态的数量,判断是否小于该石堆的数量,是就加1。最后输出总数。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int n,i,s[1001],sum,c;
    while(1)
    {
        RD(n);
        if(n==0)
        {
            break;
        }
        sum=0;
        FOR(1,n,i)
        {
            RD(s[i]);
            sum^=s[i];
        }
        c=0;
        if(sum!=0)
        {
            FOR(1,n,i)
            {
                if((sum^s[i])<s[i])
                {
                    c++;
                }
            }
        }
        printf("%d\n",c);
    }
    return 0;
}

POJ1704 Georgia and Bob

阶梯尼姆博弈,尼姆博弈的变形。题意是有n个格子,某些里面有石子,我们可以将石子左移任意格数,但不能越过前方的石子。我们可以将最左边的石子当做终点,将石子两两分为一组,前后两组的格数差距是没有意义的,因为移动前一组的后一个,后一组的前一个总能移动相应格数。所以只需要考虑同一组的前后的格数差,就等同于尼姆博弈中的石堆。所以最后只需要异或起来就行了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
    char c;
    do
    {
        c=getchar();
    }
    while(c<'0'||c>'9');
    ret=c-'0';
    while((c=getchar())>='0'&&c<='9')
    {
        ret=ret*10+(c-'0');
    }
}
inline void OT(int a)
{
    if(a>=10)
    {
        OT(a/10);
    }
    putchar(a%10+'0');
}
int main()
{
    int t,n,a[10001],s,i;
    RD(t);
    while(t--)
    {
        RD(n);
        s=0;
        FOR(1,n,i)
        {
            RD(a[i]);
        }
        if(n%2==1)
        {
            a[++n]=0;
        }
        sort(a+1,a+n+1);
        for(i=n; i>=1; i-=2)
        {
            s^=(a[i]-a[i-1]-1);
        }
        if(s!=0)
        {
            printf("Georgia will win\n");
        }
        else
        {
            printf("Bob will win\n");
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值