博弈论:
·博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支, 博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
一、基础博弈:
(一)巴什博弈:
只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。
例题:
HDU2149 Public Sale
题意中文我就不多说了,自己看。这是一个典型的巴什博弈,只要m%(n+1)==0就是后手赢。难点在于先手赢的情况是要输出所有可能的第一次出价情况。需要判断n是否大于等于m,如果n>=m则m~n的所有数都是符合情况的,而m>n时,第一次取的是m除以(n+1)的余数,因为只有让后手者保持(n+1)的倍数才能先手必胜。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int n,m,i;
while(scanf("%d%d",&m,&n)!=EOF)
{
if(m%(n+1)==0)
{
printf("none\n");
}
else
{
if(m<=n)
{
printf("%d",m);
FOR(m+1,n,i)
{
printf(" %d",i);
}
printf("\n");
}
else
{
printf("%d\n",m%(n+1));
}
}
}
return 0;
}
HDU2188 悼念512汶川大地震遇难同胞——选拔志愿者
这题给人一种中国正能量,必做的巴什博弈题。思路一样,n%(m+1)==0后手必胜,否则先手必胜。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int n,m,t;
RD(t);
while(t--)
{
RD(n);
RD(m);
if(n%(m+1)==0)
{
printf("Rabbit\n");
}
else
{
printf("Grass\n");
}
}
return 0;
}
POJ2368 Buttons
巴什博弈的变形,可能不太看出来的这是一个巴什博弈,题意是给你一个k,让你求出最小的l使得k%(l+1)==0。。。这下就有点明显了,之前都是问你先手还是后手,这次问你的是取最大的n的最小情况。思路:求出k的所有因数,从小到大排序后,输出第一个大于2的数减1,如果没有输出0。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int k,i,j,a[10001],f;
while(scanf("%d",&k)!=EOF)
{
mem(a,0);
j=0;
for(i=1; i*i<=k; ++i)
{
if(k%i==0)
{
a[j++]=i;
a[j++]=k/i;
}
}
sort(a,a+j);
f=0;
For(0,j,i)
{
if(a[i]>2)
{
f=1;
printf("%d\n",a[i]-1);
break;
}
}
if(f==0)
{
printf("0\n");
}
}
return 0;
}
(二)威佐夫博奕:
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有如下三条性质:
1、任何自然数都包含在一个且仅有一个奇异局势中。由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1成立。
2、任意操作都可将奇异局势变为非奇异局势。事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3、采用适当的方法,可以将非奇异局势变为奇异局势。
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b – bk个物体,即变为奇异局势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – aj 即可。
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
例题:
POJ1067 取石子游戏
典型的威佐夫博弈,和威佐夫博弈提到的例子一样,直接定义做就行。判断两堆中较小堆数量是否与两堆数量差值乘以(1+√5)/2相等,若相等就是先手必输,反之先手必胜。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int a,b,x;
double c=(sqrt(5.0)+1.0)/2.0;
while(scanf("%d%d",&a,&b)!=EOF)
{
x=abs(a-b);
x=x*c;
if(x==min(a,b))
{
printf("0\n");
}
else
{
printf("1\n");
}
}
return 0;
}
HDU2177 取(2堆)石子游戏
题目要求判断是先手还是后手胜利,如果先手胜利,需要输出胜利情况先第一次取石子后两堆石子的情况。这就是一个找下一个奇态局势的题目。首先要判断的是两堆同时减去一个数,因为两堆差值不变,还是奇态局势,然后再for循环查找a和b之间,a以内的减去得到奇态局势的数。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int a,b,x,y,i;
double c=(sqrt(5.0)+1.0)/2.0;
while(1)
{
RD(a);
RD(b);
if(a==0&&b==0)
{
break;
}
x=b-a;
x=x*c;
if(x==a)
{
printf("0\n");
}
else
{
printf("1\n");
if(x<a)
{
printf("%d %d\n",x,b-a+x);
}
for(i=b;i>=a;--i)
{
y=(i-a)*c;
if(y==a)
{
printf("%d %d\n",a,i);
break;
}
}
for(i=a;i>=0;--i)
{
y=(a-i)*c;
if(y==i)
{
printf("%d %d\n",i,a);
break;
}
}
}
}
return 0;
}
(三)尼姆博弈:
有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。
计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:
1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)
对于奇异局势(0,n,n)也一样,结果也是0。
任何奇异局势(a,b,c)都有a(+)b(+)c =0。
如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。
例题:
POJ2234 Matches Game
一道最简单的尼姆博弈题,与内容上说的例子一样。只需要简单异或就行了,最后判断是否为零,若是零就是后手必胜,反之先手。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int t,ans,x;
while(scanf("%d",&t)!=EOF)
{
ans=0;
while(t--)
{
RD(x);
ans^=x;
}
if(ans==0)
{
printf("No\n");
}
else
{
printf("Yes\n");
}
}
return 0;
}
POJ2975 Nim
题意:和尼姆博弈的内容一样,只是如果是先手胜的话就输出能赢的方法总数。思路:首先是将所有石堆的石子数量异或一下得到数值判断能否获胜,若能获胜,在再用该数值与各石堆数量分别异或,这就是得到了取走多少石子能让该堆石子变为必败态的数量,判断是否小于该石堆的数量,是就加1。最后输出总数。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int n,i,s[1001],sum,c;
while(1)
{
RD(n);
if(n==0)
{
break;
}
sum=0;
FOR(1,n,i)
{
RD(s[i]);
sum^=s[i];
}
c=0;
if(sum!=0)
{
FOR(1,n,i)
{
if((sum^s[i])<s[i])
{
c++;
}
}
}
printf("%d\n",c);
}
return 0;
}
POJ1704 Georgia and Bob
阶梯尼姆博弈,尼姆博弈的变形。题意是有n个格子,某些里面有石子,我们可以将石子左移任意格数,但不能越过前方的石子。我们可以将最左边的石子当做终点,将石子两两分为一组,前后两组的格数差距是没有意义的,因为移动前一组的后一个,后一组的前一个总能移动相应格数。所以只需要考虑同一组的前后的格数差,就等同于尼姆博弈中的石堆。所以最后只需要异或起来就行了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int main()
{
int t,n,a[10001],s,i;
RD(t);
while(t--)
{
RD(n);
s=0;
FOR(1,n,i)
{
RD(a[i]);
}
if(n%2==1)
{
a[++n]=0;
}
sort(a+1,a+n+1);
for(i=n; i>=1; i-=2)
{
s^=(a[i]-a[i-1]-1);
}
if(s!=0)
{
printf("Georgia will win\n");
}
else
{
printf("Bob will win\n");
}
}
return 0;
}