一、使用SD生成第一张AI图片

用AI画出的第一张图

在当今这个由人工智能技术引领的时代,艺术创作的方式已经发生了翻天覆地的变化。AI辅助作图技术的进步,使得绘画不再局限于传统的画笔和颜料,而是可以通过先进的算法来实现。在这篇讲义中,我将带你领略如何运用Stable Diffusion模型这一强大的AI工具,轻松地创作出你的第一幅数字艺术作品。为了简化操作过程,我们特别推荐两种用户友好的界面:WebUI和ComfyUI。在本讲义中,我们将重点介绍WebUI的使用,让你即使不会一点编程,也能轻松上手。

WebUI是国外的一位大佬做出的利用网页来实现调用Stable Diffusion模型的一个工具,国内使用难度较大,但是国内的秋叶大佬对其进行了汉化以及常用模型的整合,使其在国内的使用也较为方便 ,这里提供B站一位up主的下载教学

链接里有安装方法和视频,这是其他大佬提供的安装包。WebUI打开后是如下界面:

WebUI

§ 1. A I 的第一张图 \S1.AI的第一张图 §1.AI的第一张图

1.提示词概要

正如学习C语言最开始要先打HelloWorld程序一样,我们学习AI作图自然是要先生成一幅图片来看看的,观察WebUI的界面,最上方的两个输入框分别是正向提示词和反向提示词

我们平常大都使用过一些大厂的AI去辅助我们完成一些文字类的任务,比如说Kimi,文心一言之类的 ,而我们问他们的问题或者是给他们的任务就是所谓的提示词(prompt),提示AI去完成一些任务。这里的正向提示词便是如此,指示AI要画的内容,而反向提示词顾名思义,指的便是让AI不要画的内容。

可能会有人疑惑,平常使用人工智能的时候也用不着多写一些反向的提示词呀,为什么Stable Diffusion就需要呢,举个比较恰当但不太严谨的例子,现在在我们的大脑里想想一只小狗,大家想想小狗的样子可能都不太相同,有黑色毛发的,有白色毛发的,有各种各样品种的,甚至还有的是人牵着狗的画面,这是因为狗发这个概念太过宽泛,并不能代指具体的狗,为了精确锁定我们想要小狗,我们就要加入更多的正向提示词加以限制,而如果我们并不想像人一样的元素出现在画面里,我们就需要添加反向提示词去除。

2.提示词的书写

了解了提示词是什么东西以后,我们就可以书写我们的提示词了,要注意的是因为Stable Diffusion是外国的模型,所以他只能接受英文的提示词,我们可以书写中文的提示词,然后通过翻译软件翻译成英文。

因为是第一张图片,所以并没有太高的要求,想画的内容亦是随意的,这里就以刚刚示例中的狗作为基础,写下下面的提示词(英文,中文是翻译):

一只小狗趴在雪地上,哈士奇,黑色的毛发,蓝色的眼睛,呆萌,阳光照在它的身上
A puppy lying on the snow, husky, black hair, blue eyes, lovely, the sun shines on its body,

再在后面加上一套较为通用的提高画质的模板:

(masterpiece:1.2), best quality,masterpiece, highres, original, extremely detailed wallpaper, perfect lighting,(extremely detailed CG: 1.2),

而在反向提示词中加入一套模板(这其实画人用的反向提示词,在这之前,我也没有画过动物):

NSFW, (worst quality:2), (low quality:2), (normal quality:2), lowres,normal quality,((monochrome)),((grayscale)), skin spots, acnes,skin blemishes, age spot, (ugly:1.331), (duplicate:1.331),(morbid:1.21),(mutilated:1.21), (tranny:1.331), mutated hands,(poorty drawn hands:1.5), blury, (bad anatomy:1.21), (bad
proportions:1.331), extra limbs, (disfigured:1.331), (missingams:1.331),(extra legs:1.331), (fused fingers:1.61051),(too many fingers:1.61051), (unclear eyes:1.331), lowers, bad hands,missing fingers, extra digit,bad hands, missing fingers, (((extra ams and legs)))

如果想要生成壁纸的画,要将画面的宽度与高度分别改称800和450。

3.画图

做好了这些前置的准备之后,点击生成,我们就可以静待画作的生成了,下面是生成好的图片:

哈士奇

图片可以点击下载图标下载,也可以找到本地的outputs文件夹(就位于压缩包解压后的文件夹里),里面会自动存放生成好的图片,要注意的是图片生成的过程如同抽卡,不一定能一次性抽出自己想要的图片,可以多次生成,直到自己满意。

### Stable Diffusion 换脸大模型实现教程及相关数据集 #### 下载并配置所需模型 为了使用 Stable Diffusion 的换脸功能,需先完成必要的模型准备。具体操作如下: - 需要下载 `inswapper_128.onnx` 模型,并将其放置于 SD 安装目录下的 `\models\roop\` 文件夹中[^1]。 - 可通过命令行工具下载额外的辅助模型文件,例如运行以下命令获取更多资源: ```bash bypy downfile /stable_diffusion/extensions/roop/roop_other_models.zip roop_other_models.zip ``` 此命令会帮助用户快速部署扩展包中的其他必要组件[^2]。 --- #### 使用 C 站 LORA 模型生成人脸图片 除了基础的换脸流程外,还可以利用预训练好的人物 LORA 模型来提升效果致性。尽管这种方法无法达到绝对的致性,但它能够显著改善生成的人脸特征匹配度。需要注意的是,这种致性受限于多个因素,包括但不限于训练数据的数量、质量和拍摄角度等[^3]。 --- #### 提示词的作用及其重要性 在实际应用中,提示词的设计对于最终生成的效果至关重要。提示词不仅定义了目标图像的内容描述,还影响着 AI 对细节的理解程度。因此,在学习和实践过程中,建议参考高质量的提示词手册以优化结果[^4]。 以下是基于 Python 和 Shell 脚本的个简单自动化脚本模板用于批量处理上述任务: ```python import os from subprocess import run, PIPE def download_model(url, dest_folder): """Download and place model into specified folder.""" if not os.path.exists(dest_folder): os.makedirs(dest_folder) command = f"bypy downfile {url} {os.path.join(dest_folder, 'model_file')}" result = run(command.split(), stdout=PIPE, stderr=PIPE) if result.returncode != 0: raise Exception(f"Failed to download the model with error: {result.stderr.decode()}") # Example usage download_model("/path/to/model", "./SD安装目录/models/roop/") ``` --- #### 数据集推荐 针对换脸技术的数据需求,可考虑以下几个公开可用的数据源作为起点: 1. **CelebA Dataset**: 包含超过20万张名人面部照片,适合用来微调或测试算法性能。 2. **VGGFace2**: 更大规模的脸部识别数据库,涵盖了来自不同种族背景的人物样本。 3. 自定义采集:如果追求特定领域内的高精度表现,则可根据项目要求自行收集相关素材加以标注整理成专属集合。 这些资料均可在网络平台上找到官方链接或者第三方镜像站点提供便捷访问途径。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值