快速理解朴素贝叶斯

贝叶斯方法被广泛应用于概率论中,也是现在机器学习算法的基础方法之一,被广泛用来处理分类和预测场景。

那么什么是贝叶斯方法呢?朴素贝叶斯又是什么呢?

这里写下一些我自己的理解。

 

贝叶斯

贝叶斯的基本公式是:

P(A|B) = \frac{P(B|A) * P(A)}{P(B)}

这个里面:

P 的含义是概率;

P(A)是先验概率,含义是 A 事件存在的概率;

P(B|A)是概率条件,含义是在A 的结果下再次出现 B 条件的概率;

P(B)是归一证据,含义是条件 B 发生的概率;

P(A|B) 是后验概率,含义是在B 条件下出现 A 的概率;

需要注意的是:

这里面的 A 一般指我们最终需要测算其概率的结果;

这里面的 B 是测算结果概率所需要的条件,一般是多个条件,因此,可以作为 B_{n}来理解,如下

P(A|B_{n}) = \frac{P(B_{n}|A) * P(A)}{P(B_{n})}

朴素贝叶斯

朴素贝叶斯是贝叶斯公式的一种简化应用。最根本的区别是朴素贝叶斯源于一个假设前提:

构成概率的多个条件之间相互独立。

举个例子

条件独立例子

理解朴素贝叶斯,首先要理解什么是条件独立。

在自然界中,条件往往会在不同的维度下或多或少的有所关联。而这些关联,往往会或多或少影响结果概率。以经典的箱子摸球为例:

箱子里5 白 5 红 10 个球,求每一次摸白球的概率。

如果条件不独立的话:

第一次摸白球的概率是 5/10;

第二次摸白球的概率是 5/9 或 4/9;

第三次摸白球的概率是 5/8 或 4/8 或 3/8;

而在条件独立的情况下:

我们会假设每次摸白球的概率都是 1/2,相当于每次摸完一个球我们还会放进去,后续条件概率不受其他影响,这就是条件独立假设。

贝叶斯例子

举个例子,已知以下样本:

条件一条件二条件三条件四结果
语文好数学好物理好地理好理科
语文差数学好物理好地理差理科
语文好数学差物理差地理好文科
语文差数学差物理差地理好文科
语文好数学差物理差地理差文科
语文差数学差物理好地理差理科
语文差数学差物理好地理好文科
语文差数学好物理差地理差理科
语文好数学差物理差地理差文科
语文好数学好物理好地理好理科

求一个 语文好、数学好、物理好、地理差的学生更可能选择理科还是选择文科?

 

此时,将该题目解析一下:

选择理科就是我们要求的结果,语文好、数学好、物理好、地理差就是给定的条件。

带入到标准贝叶斯公式:

但是考虑到标准贝叶斯的条件关联性,分子就会变成:

这里面就会面临一个很明显的问题:当我们拥有更多特征数量的时候,特征之间的关系影响运算就会变成灾难。

而在朴素贝叶斯的语境中,我们是认为条件是独立的,那么分子式就会变成:

在这种情景下,我们仅需要考虑每个独立特征发生的概率即可,不需要考虑特征之间的关联关系,这会极大减轻计算的工作量。

上述问题,带入朴素贝叶斯公式就变成了:

带入数据:

=0.096

同理,带入选择文科:

=0.003

那么显然,选择理科的可能性远大于选择文科的可能性。

其中,数学好、选择文科的样本为 0,但是我们在做概率分析的时候,不会直接代入 0 值,而是会分配一个很小的值代入,从而避免 0 概率的发生,这被称为平滑处理

这里就有一个有意思的小细节,我们可以看到即使选择理科的可能性更大,其概率也只有 0.096 而已,这就引申出了朴素贝叶斯分类算法中的一个普遍现象:

贝叶斯分类结果是一个相对结果,而非绝对值。

我们得出一个分类结果,不是因为他的绝对值更高,而是因为相对其他分类结果的值更高。

总结

贝叶斯算法可以很好的处理有限样本情况下的概率分类问题;

朴素贝叶斯的根本前提是假设各特征条件之间相互独立;

对于部分缺失的特征,我们一般会进行平滑处理;

贝叶斯算法对样本敏感,因此我们要尽可能合理利用样本特征;

贝叶斯分类结果的一般依据是相对概率,而非绝对值。

拓展

更深度的理解可以移步该文:

http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值