机器学习(五):贝叶斯学习

本文介绍了贝叶斯学习的概念,包括先验概率、后验概率、贝叶斯定理、全概率法则以及贝叶斯网络。重点讨论了贝叶斯网络的学习过程,包括结构学习和参数学习,并提到了最大后验假设(MAP)和极大似然假设(ML)。此外,还简述了朴素贝叶斯分类器和EM算法在概率模型中的应用。
摘要由CSDN通过智能技术生成

机器学习系列主要为 我在国科大研一期间,在《机器学习方法与应用》课程中所学知识概述,以及课后补充学习的内容。

----------------------------------------------------------------------------------------------------------------------------------

先验概率:用P(h)表示在没有观察到训练数据之前假设h拥有的初始概率,P(h)被称为假设h的先验概率。先验概率反映了关于假设h是一正确假设的机会的背景知识,如果没有这一先验知识,可以简单的将每一候选假设赋予相同的先验概率。

P(D)表示训练数据D的先验概率,那么P(D|h)就表示假设h成立时D的概率

在分类中,我们关系的是给定D时的h概率,即给定D,h成立的概率P(h|D)。称为h的后验概率

计算概率的基本公式:

交换规则 P(A,B) = P(B,A) 

乘法规则 P(A,B) = P(A|B)P(B) = P(B|A)P(A) = P(B,A)

A,B,C,D 4个变量联合发生的概率 :P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D)

贝叶斯定理 P(h|D) = P(D|h)P(h)/P(D)

全概率法则:如果实践A1,A2,...,An互斥,且满足概率和为1,P(B)= P(B|A1)P(A1) + P(B|A2)P(A2) + ... + P(B|An)P(An)

贝叶斯网络(贝叶斯信念网)&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值