NYOJ 118 修路方案(次小生成树)

修路方案

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 5
描述

南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。

现在已经知道哪些城市之间可以修路,如果修路,花费是多少。

现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。

但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。

输入
第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No)
样例输入
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
样例输出
No
Yes

次最小生成树

定义:设T是图G的最小生成树,如果T1满足ω(T1)=min{ω(T’)| T’∈Not(T)},则T1是G的次小生成树。

解释:除了最小生成树外,另外一个生成树的权值和最小的生成树,定义为次最小生成树。

经典题目:POJ1679 The Unique MST,对于一张图,判断最小生成树是否惟一。惟一的定义是:不存在第二棵生成树,它的权值与最小生成树的权值相等。w(次最小生成树)!=w(最小生成树)

算法的思路:

在生成最小生成树的时候,判断下一条边的权值是否和这一条边的权值相等,如果相等,则往下判断这两个点的时候和上两个点是否分别连通,若相等,则表示存在另一条边可以生成最小生成树。


krushal+判断

#include<cstdio>

#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
struct Node{int from,to,cost;}es[200010];
int V,E,pre[505];
int find(int x){return x==pre[x]? x : find(pre[x]);}
bool cmp(Node a,Node b){return a.cost < b.cost;}
int main()
{  
    int test;
    scanf("%d",&test);
    while(test--){
        int x,y,z,p=0;;
        scanf("%d%d",&V,&E);
        for(int i = 1; i <= E; i++){
            scanf("%d%d%d",&x,&y,&z); 
            es[p].from = (x > y ? y : x);
            es[p].to = (x > y ? x: y);     
            es[p++].cost=z;
        }               
        sort(es,es+p,cmp);
        for(int i = 1; i <= V; i++)pre[i]=i;
        bool update=false;
        for(int i = 0; i < p; i++){
                int a = find(es[i].from);
                int b = find(es[i].to);
                int c=es[i].cost;
                if(a != b){
                    for(int j = i+1; j < p; j++){                                             
                         if(es[j].cost != c)break;
                         else if(a == find(es[j].from) && b == find(es[j].to)){
                                  update = true;
                                  break;                                  
                         }                              
                    }

                    pre[a] = b;     
                }                              
        }
        if(update)printf("Yes\n");
        else printf("No\n");              
    }
    return 0;
    
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
孪生素数是指两个素数之间的差值为2的素数对。通过筛选法可以找出给定素数范围内的所有孪生素数的组数。 在引用的代码中,使用了递归筛选法来解决孪生素数问题。该程序首先使用循环将素数的倍数标记为非素数,然后再遍历素数数组,找出相邻素数之间差值为2的素数对,并统计总数。 具体实现过程如下: 1. 定义一个数组a[N,用来标记数字是否为素数,其中N为素数范围的上限。 2. 初始化数组a,将0和1标记为非素数。 3. 输入要查询的孪生素数的个数n。 4. 循环n次,每次读入一个要查询的素数范围num。 5. 使用两层循环,外层循环从2遍历到num/2,内层循环从i的平方开始,将素数的倍数标记为非素数。 6. 再次循环遍历素数数组,找出相邻素数之间差值为2的素数对,并统计总数。 7. 输出总数。 至此,我们可以使用这个筛选法的程序来解决孪生素数问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [python用递归筛选法求N以内的孪生质数(孪生素数)](https://blog.csdn.net/weixin_39734646/article/details/110990629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [NYOJ-26 孪生素数问题](https://blog.csdn.net/memoryofyck/article/details/52059096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值