次小生成树(lca+Kruskal)

定理:

对于一张无向图,如果存在最小生成树和(严格)次小生成树,那么对于任何一颗最小生成树看,都存在一颗(严格次小生成树,使得这两棵树只有一条边不同

最小生成树大家应该都不陌生, 次小生成树就是边权和大于等于最小生成树的另一颗树,也就是边权之和第二小的生成树, 有严格次小生成树非严格次小生成树
边权之和严格大于最小生成树的且权值最小的树,就是严格次小生成树
若求得的另一颗树与最小生成树权值相等, 则为非严格的次小生成树

 练习

给定一张 N 个点 M条边的无向图,求无向图的严格次小生成树。

设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum的生成树中最小的一个。

输入格式

第一行包含两个整数 N和 M。

接下来 M行,每行包含三个整数 x,y,z,表示点 x 和点 y 之前存在一条边,边的权值为 z

输出格式

包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)

数据范围

N≤105,M≤3×105

输入样例:

5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6

输出样例:

11

思路

先求出最小生成树,再枚举每条非树边

AC_code

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;

typedef long long LL;

const int N=1e5+10,M=3e5+10,INF=0x3f3f3f3f;

struct node 
{
    int a,b,w;
    bool used;
}edge[M];

int n,m;
int h[N],w[M],e[M],ne[M],idx;//建图
int depth[N],fa[N][18];//求lca时预处理的数据,具体见倍增法求lca
int dist1[N][18],dist2[N][18];
//dist1:结点i向上跳2^j步所经过的最大边权
//dist2:结点i向上跳2^j步所经过的次大边权
int p[N];
int q[M];
int find(int x)//并查集
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

void add(int a,int b,int c)//加边
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

bool cmp(node a,node b)
{
    return a.w<b.w;
}
/*
    kruskal算法求最小生成树
    01:将所有边按从小到达排序
    02:枚举每条边,若结点a和结点b不连通(并查集),将a和b连接
*/
LL Kruskal()
{
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        edge[i]={a,b,c};
    }
    
    for(int i=1;i<=n;i++)   p[i]=i;//并查集初始化
    
    sort(edge+1,edge+1+m,cmp);
    
    LL res=0;//最小生成树的边权和
    
    for(int i=1;i<=m;i++)
    {
        //if(!edge[i].used)
        //{
            int a=find(edge[i].a),b=find(edge[i].b),w=edge[i].w;
            if(a!=b)
            {
                p[a]=b;
                res+=w;
                edge[i].used=true;
            }
        //}
    }
    
    return res;
}

void build()
{
    memset(h,-1,sizeof h);
    for(int i=1;i<=m;i++)
    {
        int a=edge[i].a,b=edge[i].b,w=edge[i].w;
        if(edge[i].used)
        {
            add(a,b,w);
            add(b,a,w);
        }
    }
}

void bfs()
{
    memset(depth,0x3f,sizeof depth);
    depth[0]=0;
    depth[1]=1;
    queue<int> q;
    q.push(1);
    
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        
        for(int i=h[t];~i;i=ne[i])
        {
            int j=e[i];
            if(depth[j]>depth[t]+1)
            {
                depth[j]=depth[t]+1;
                q.push(j);
                
                fa[j][0]=t;
                dist1[j][0]=w[i],dist2[j][0]=-INF;
                for(int k=1;k<18;k++)
                {
                    int anc=fa[j][k-1];
                    fa[j][k]=fa[anc][k-1];
                    
                    int distance[4]={dist1[j][k-1],dist2[j][k-1],dist1[anc][k-1],dist2[anc][k-1]};
                    dist1[j][k]=dist2[j][k]=-INF;
                    
                    for(int u=0;u<4;u++)
                    {
                        int d=distance[u];
                        if(d>dist1[j][k])
                        {
                            dist2[j][k]=dist1[j][k];
                            dist1[j][k]=d;
                        }
                        else if(d!=dist1[j][k]&&d>dist2[j][k])
                        {
                            dist2[j][k]=d;
                        }
                    }
                }
            }
        }
    }
}


int lca(int a,int b,int w)
{
    static LL distance[2*N];
    //存下结点a与结点b向上跳的过程中的的最大边和次大边
    
    int cnt=0;
    
    //深度大的先跳
    if(depth[a]<depth[b])   swap(a,b);
    //lca
    //01:先跳到同一层
    for(int k=17;k>=0;k--)
    {
        if(depth[fa[a][k]]>=depth[b])
        {
            distance[++cnt]=dist1[a][k];
            distance[++cnt]=dist2[a][k];
            a=fa[a][k];
        }
    }
    //02:如果a!=b,a与b同时向上跳,直到跳到其最近公共祖先的下一层
    if(a!=b)
    {
        for(int k=17;k>=0;k--)
        {
            if(fa[a][k]!=fa[b][k])
            {
                distance[++cnt]=dist1[a][k];
                distance[++cnt]=dist2[a][k];
                distance[++cnt]=dist1[b][k];
                distance[++cnt]=dist2[b][k];
                a=fa[a][k],b=fa[b][k];
            }
        }
        // 此时a和b到lca下同一层 所以还要各跳1步=跳2^0步
        distance[++cnt]=dist1[a][0];
        distance[++cnt]=dist1[b][0];
    }
    
    int d1,d2;
    d1=d2=-INF;
    for(int i=1;i<=cnt;i++)
    {
        int d=distance[i];
        if(d>d1)
        {
            d2=d1;
            d1=d;
        }
        else if(d!=d1&&d>d2)
        {
            d2=d;
        }
    }
    
    if(w>d1)    return w-d1;
    if(w>d2)    return w-d2;
    return INF;
}

int main()
{
    cin>>n>>m;
    
    LL sum=Kruskal();//最小生成树的边权和
    
    build();//将最小生成树建出来
    
    bfs();//倍增法求lca的预处理
    
    LL res=1e18;
    for(int i=1;i<=m;i++)
    {
        //枚举非树边
        if(!edge[i].used)
        {
            int a=edge[i].a,b=edge[i].b,w=edge[i].w;
            res=min(res,sum+lca(a,b,w));
            //lca返回w-(a与b之间最大边或者次大边的长度)
        }
    }
    cout<<res;
    return 0;
}

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
LCA+路径压缩的方式可以用于求解树上的桥,具体实现步骤如下: 1. 对于树上每个节点,记录其在树中的深度(或者高度)以及其父亲节点。 2. 对于每个节点,记录其在树上的最小深度(或最小高度)以及其所在子树中深度最小的节点。 3. 对于每条边(u, v),设u的深度小于v的深度(或者高度),则如果v的子树中没有深度小于u的节点,则(u, v)是桥。 具体的实现过程如下: 首先,我们需要对树进行预处理,求出每个节点的深度以及其父亲节点。可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来实现。在这里我们使用DFS来实现: ```c++ vector<int> adj[MAX_N]; // 树的邻接表 int n; // 树的节点数 int dep[MAX_N], fa[MAX_N]; // dep[i]表示节点i的深度,fa[i]表示节点i的父亲节点 void dfs(int u, int f, int d) { dep[u] = d; fa[u] = f; for (int v : adj[u]) { if (v != f) { dfs(v, u, d + 1); } } } ``` 接下来,我们需要计算每个节点所在子树中深度最小的节点。我们可以使用LCA(最近公共祖先)的方法来实现。具体来说,我们可以使用倍增算法来预处理出每个节点的2^k级祖先,并且在查询LCA时使用路径压缩的方式优化时间复杂度。这里我们不展开讲解LCA和倍增算法的细节,如果你对此感兴趣,可以参考其他资料进行学习。 ```c++ const int MAX_LOG_N = 20; // log2(n)的上取整 int anc[MAX_N][MAX_LOG_N]; // anc[i][j]表示节点i的2^j级祖先 int mn[MAX_N]; // mn[i]表示节点i所在子树中深度最小的节点 void precompute() { // 预处理anc数组 for (int j = 1; j < MAX_LOG_N; j++) { for (int i = 1; i <= n; i++) { if (anc[i][j - 1] != -1) { anc[i][j] = anc[anc[i][j - 1]][j - 1]; } } } // 计算mn数组 for (int i = 1; i <= n; i++) { mn[i] = i; for (int j = 0; (1 << j) <= dep[i]; j++) { if ((dep[i] & (1 << j)) != 0) { mn[i] = min(mn[i], mn[anc[i][j]]); i = anc[i][j]; } } } } ``` 最后,我们可以使用LCA+路径压缩的方式来判断每条边是否为桥。具体来说,对于每条边(u, v),我们需要判断v的子树中是否存在深度小于u的节点。如果存在,则(u, v)不是桥,否则(u, v)是桥。 ```c++ bool is_bridge(int u, int v) { if (dep[u] > dep[v]) swap(u, v); if (mn[v] != u) return true; // 子树中存在深度小于u的节点 return false; // 子树中不存在深度小于u的节点 } ``` 完整代码如下:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑夜蔓蔓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值