边缘计算:应用与挑战综合审视
1. 引言
边缘计算正在彻底改变全球数十亿设备的数据收集、处理和传播方式。随着物联网(IoT)的迅猛发展以及对实时高性能计算资源有需求的新应用不断涌现,网络边缘的系统变得愈发重要。借助 5G 无线等更快的网络技术,计算系统能够加速视频处理与分析、自动驾驶汽车、人工智能和机器人等实际应用的发展或为其提供支持。
早期计算的目标是解决因物联网生成数据而导致的数据长距离传输的带宽成本问题,而如今,需要在边缘进行处理的实时应用的出现将推动这一技术向前发展。国际数据公司(IDC)预测,到 2025 年,70%的物联网数据将在网络边缘进行处理,届时全球联网设备将超过 1500 亿台。
边缘计算是一种分布式计算方式,它将数据处理靠近数据的创建或消费点,即“边缘”。简单来说,边缘计算无需将数据发送到远程数据中心,而是在收集数据的设备附近进行存储和处理,这样可以确保延迟问题不会影响应用和数据(尤其是实时数据)的性能。
由于连接到互联网的物联网设备数量激增,边缘计算成为企业节省成本的一种方式。它通过在本地执行操作,减少了在集中式或基于云的位置需要处理的数据量。而且,许多物联网设备的运行会产生大量数据,例如工厂车间的生产设备监控装置或远程办公室的联网视频摄像头。当越来越多的设备同时传输数据时,就会出现各种问题。
随着云计算的出现,物联网得以迅速发展。云计算为物联网的部署和应用提供了关键支持,满足了网络的存储、通信和计算需求,并且可以根据每个客户和用例的具体需求进行定制。云计算具有可扩展性、可访问性、低管理开销、按需付费和易用性等诸多优势,推动了全球相关产业的快速发展。
然而,云计算在一些方面无法满足应用需求,如网络