子树

有两个不同大小的二进制树: T1 有上百万的节点; T2 有好几百的节点。请设计一种算法,判定 T2 是否为 T1的子树。

样例

下面的例子中 T2 是 T1 的子树:

       1                3
      / \              / 
T1 = 2   3      T2 =  4
        /
       4

下面的例子中 T2 不是 T1 的子树:

       1               3
      / \               \
T1 = 2   3       T2 =    4
        /
       4
注意

若 T1 中存在从节点 n 开始的子树与 T2 相同,我们称 T2 是 T1 的子树。也就是说,如果在 T1 节点 n 处将树砍断,砍断的部分将与 T2 完全相同。

/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */
class Solution {
public:
    /**
     * @param T1, T2: The roots of binary tree.
     * @return: True if T2 is a subtree of T1, or false.
     */
    bool isSubtree(TreeNode *T1, TreeNode *T2) {
        // write your code here
        if (T1 == NULL && T2 != NULL)
	    {
		    return false;
	    }
	    if (T2 == NULL)
	    {
	        return true;
	    }
	    vector<TreeNode*> buf;
	    findSubRoot(T1, T2, buf);
	    for (int i = 0; i < buf.size(); i++)
	    {
		    if (isSame(buf[i], T2))
		    {
			    return true;
		    }
	    }

	    return false;
    }
private:
    void findSubRoot(TreeNode *T1, TreeNode *T2, vector<TreeNode*> &buf)
    {
	    if (T1 == NULL || T2 == NULL)
	    {
		    return;
	    }
	    if (T1->val == T2->val)
	    {
		    buf.push_back(T1);
	    }

	    findSubRoot(T1->left, T2, buf);
	    findSubRoot(T1->right, T2, buf);
    }
    
    bool isSame(TreeNode *T1, TreeNode *T2)
    {
	    if (T1 == NULL)
	    {
		    if (T2 == NULL)
		    {
			    return true;
		    }
		    else
		    {
			    return false;
		    }
	    }
	    if (T2 == NULL)
	    {
		    if (T1 == NULL)
		    {
			    return true;
		    }
		    else
		    {
			    return false;
		    }
	    }

	    if (T1->val != T2->val)
	    {
		    return false;
	    }

	    if (!isSame(T1->left, T2->left))
	    {
		    return false;
	    }

	    if (!isSame(T1->right, T2->right))
	    {
		    return false;
	    }

	    return true;
    }
};


Splay删除子树是一种数据结构和算法中的操作,通常用于自平衡二叉搜索树(如AVL、红黑树或Treap)的变种——Splay Tree中。Splay Tree是一种动态查找树,其特点是每次访问后都会对节点进行旋转操作(splaying),使其最近被访问的节点处于根部。 当要删除一个节点时,在常规的二叉搜索树中,我们需要找到该节点并删除它,然后处理可能由删除引起的不平衡。在Splay Tree中,这个过程有所不同: 1. **查找子树**: 首先,我们在树中寻找指定的子树,这可以通过标准的查找算法实现,同时保持对父节点的更新。 2. **Splay节点**: 找到子树后,我们对包含目标节点的路径上的所有节点执行一系列旋转操作(可能是单旋转或双旋转),直到目标节点到达根部。这个过程确保了频繁访问的路径被高效地访问。 3. **删除目标节点**: 当目标节点处于根部时,删除操作变得相对简单。如果目标节点有两颗子树,则替换为其右孩子的最小值或左孩子的最大值(取决于树的类型)。如果只有一个子树,那么就直接删除。 4. **重新平衡** (可选): 取决于Splay Tree的具体实现,可能会有一个额外的步骤来确保整棵树的平衡,但这不是必须的,因为Splay已经尽可能地减少了不平衡的可能性。 Splay删除子树的时间复杂度通常是O(log n),n是树的大小,因为每个旋转操作最多改变一棵高度为h的树的高度至h+1。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值