N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000) 第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
Input示例
6 -2 11 -4 13 -5 -2
Output示例
20
#include <iostream>
#include <algorithm>
using namespace std;
int input[50000];
long long int maxSum(int n)
{
long long int result = input[0];
long long int sum = input[0];
for (int i = 1; i < n; i++)
{
if (sum < 0)
{
sum = input[i];
}
else
{
sum += input[i];
}
if (sum > result)
{
result = sum;
}
}
return result;
}
long long int minSum(int n)
{
long long int result = input[0];
long long int sum = input[0];
for (int i = 1; i < n; i++)
{
if (sum > 0)
{
sum = input[i];
}
else
{
sum += input[i];
}
if (sum < result)
{
result = sum;
}
}
return result;
}
long long int totalSum(int n)
{
long long int result = 0;
for (int i = 0; i < n; i++)
{
result += input[i];
}
return result;
}
int main(int argc, const char * argv[])
{
int n;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> input[i];
}
long long sum1 = maxSum(n);
long long sum2 = totalSum(n) - minSum(n);
cout << max(sum1, sum2) << endl;
return 0;
}