循环数组最大子段和

N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
Input示例
6
-2
11
-4
13
-5
-2
Output示例
20

#include <iostream>
#include <algorithm>
using namespace std;

int input[50000];

long long int maxSum(int n)
{
	long long int result = input[0];
	long long int sum = input[0];

	for (int i = 1; i < n; i++)
	{
		if (sum < 0)
		{
			sum = input[i];
		}
		else
		{
			sum += input[i];
		}

		if (sum > result)
		{
			result = sum;
		}
	}

	return result;
}

long long int minSum(int n)
{
	long long int result = input[0];
	long long int sum = input[0];

	for (int i = 1; i < n; i++)
	{
		if (sum > 0)
		{
			sum = input[i];
		}
		else
		{
			sum += input[i];
		}

		if (sum < result)
		{
			result = sum;
		}
	}
	
	return result;
}

long long int totalSum(int n)
{
	long long int result = 0;
	for (int i = 0; i < n; i++)
	{
		result += input[i];
	}

	return result;
}

int main(int argc, const char * argv[])
{
	int n;
	cin >> n;
	for (int i = 0; i < n; i++)
	{
		cin >> input[i];
	}

	long long sum1 = maxSum(n);
	long long sum2 = totalSum(n) - minSum(n);
	cout << max(sum1, sum2) << endl;

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值