三维空间上有N个点, 求一个点使它到这N个点的曼哈顿距离之和最小,输出这个最小的距离之和。
点(x1,y1,z1)到(x2,y2,z2)的曼哈顿距离就是|x1-x2| + |y1-y2| + |z1-z2|。即3维坐标差的绝对值之和。
Input
第1行:点的数量N。(2 <= N <= 10000) 第2 - N + 1行:每行3个整数,中间用空格分隔,表示点的位置。(-10^9 <= X[i], Y[i], Z[i] <= 10^9)
Output
输出最小曼哈顿距离之和。
Input示例
4 1 1 1 -1 -1 -1 2 2 2 -2 -2 -2
Output示例
18
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long int ll;
const int SIZE = 10005;
int n;
ll X[SIZE], Y[SIZE], Z[SIZE];
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> X[i] >> Y[i] >> Z[i];
}
sort(X, X + n);
sort(Y, Y + n);
sort(Z, Z + n);
int left = 0;
int right = n-1;
ll result = 0;
while (left < right)
{
result += X[right] - X[left] + Y[right] - Y[left] + Z[right] - Z[left];
left++;
right--;
}
cout << result << endl;
return 0;
}