距离之和最小 V2

三维空间上有N个点, 求一个点使它到这N个点的曼哈顿距离之和最小,输出这个最小的距离之和。
点(x1,y1,z1)到(x2,y2,z2)的曼哈顿距离就是|x1-x2| + |y1-y2| + |z1-z2|。即3维坐标差的绝对值之和。
Input
第1行:点的数量N。(2 <= N <= 10000)
第2 - N + 1行:每行3个整数,中间用空格分隔,表示点的位置。(-10^9 <= X[i], Y[i], Z[i] <= 10^9)
Output
输出最小曼哈顿距离之和。
Input示例
4
1 1 1
-1 -1 -1
2 2 2
-2 -2 -2
Output示例
18

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

typedef long long int ll;
const int SIZE = 10005;
int n;

ll X[SIZE], Y[SIZE], Z[SIZE];

int main()
{
	cin >> n;
	for (int i = 0; i < n; i++)
	{
		cin >> X[i] >> Y[i] >> Z[i];
	}

	sort(X, X + n);
	sort(Y, Y + n);
	sort(Z, Z + n);

	int left = 0;
	int right = n-1;

	ll result = 0;
	while (left < right)
	{
		result += X[right] - X[left] + Y[right] - Y[left] + Z[right] - Z[left];
		left++;
		right--;
	}

	cout << result << endl;

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值