51nod - 1364 最大字典序排列

给出一个1至N的排列,允许你做不超过K次操作,每次操作可以将相邻的两个数交换,问能够得到的字典序最大的排列是什么?

例如:N = 5, {1 2 3 4 5},k = 6,在6次交换后,能够得到的字典序最大的排列为{5 3 1 2 4}。

Input

第1行:2个数N, K中间用空格分隔(1 <= N <= 100000, 0 <= K <= 10^9)。
第2至N + 1行:每行一个数i(1 <= i <= N)。

Output

输出共N行,每行1个数,对应字典序最大的排列的元素。

Input示例

5 6
1
2
3
4
5

Output示例

5
3
1
2
4

思路:

贪心算法,从N到1,考虑将每个值尽量前移。用树状数组记录每个值前移需要的步数。

#include <iostream>
#include <cstring>
using namespace std;
 
const int MAXN = 1e5 + 5;
int N;
int a[MAXN];
int output[MAXN];
int pos[MAXN];
int tree[MAXN];
 
int lowbit(int x)
{
	return x & (-x);
}
 
int sum(int x)
{
    int result = 0;
    while (x > 0)
    {
        result += tree[x];
        x -= lowbit(x);
    }
 
	return result;
}
 
void add(int i, int v)
{
    while (i <= N)
    {
        tree[i] += v;
        i += lowbit(i);
    }
}
 
int main()
{
    int K;
	cin >> N >> K;
    memset(tree, 0, sizeof(tree));
    for (int i = 1; i <= N; i++)
    {
        cin >> a[i];
        pos[a[i]] = i;
        add(i, 1);
    }
    int tot = 1;
    for (int v = N; v >= 1; v--)
    {
        if (a[pos[v]] == 0) 
		{
			continue;
		}
        if (K <= 0)
		{
			break;
		}
        int step = sum(pos[v]) - 1;
        if (step > K) 
		{
			continue;
		}
        K -= step;
        output[tot++] = v;
        a[pos[v]] = 0;
        add(pos[v], -1);
        if (step == 0)
		{
			v = N;
		}
    }
 
    for (int i = 1; i <= N; i++)
    {
        if (a[i])
		{
            output[tot++] = a[i];
		}
    }
 
    for (int i = 1; i <= N; i++)
	{
		cout << output[i] << endl;
	}
 
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值