给出一个1至N的排列,允许你做不超过K次操作,每次操作可以将相邻的两个数交换,问能够得到的字典序最大的排列是什么?
例如:N = 5, {1 2 3 4 5},k = 6,在6次交换后,能够得到的字典序最大的排列为{5 3 1 2 4}。
Input
第1行:2个数N, K中间用空格分隔(1 <= N <= 100000, 0 <= K <= 10^9)。
第2至N + 1行:每行一个数i(1 <= i <= N)。
Output
输出共N行,每行1个数,对应字典序最大的排列的元素。
Input示例
5 6
1
2
3
4
5
Output示例
5
3
1
2
4
思路:
贪心算法,从N到1,考虑将每个值尽量前移。用树状数组记录每个值前移需要的步数。
#include <iostream>
#include <cstring>
using namespace std;
const int MAXN = 1e5 + 5;
int N;
int a[MAXN];
int output[MAXN];
int pos[MAXN];
int tree[MAXN];
int lowbit(int x)
{
return x & (-x);
}
int sum(int x)
{
int result = 0;
while (x > 0)
{
result += tree[x];
x -= lowbit(x);
}
return result;
}
void add(int i, int v)
{
while (i <= N)
{
tree[i] += v;
i += lowbit(i);
}
}
int main()
{
int K;
cin >> N >> K;
memset(tree, 0, sizeof(tree));
for (int i = 1; i <= N; i++)
{
cin >> a[i];
pos[a[i]] = i;
add(i, 1);
}
int tot = 1;
for (int v = N; v >= 1; v--)
{
if (a[pos[v]] == 0)
{
continue;
}
if (K <= 0)
{
break;
}
int step = sum(pos[v]) - 1;
if (step > K)
{
continue;
}
K -= step;
output[tot++] = v;
a[pos[v]] = 0;
add(pos[v], -1);
if (step == 0)
{
v = N;
}
}
for (int i = 1; i <= N; i++)
{
if (a[i])
{
output[tot++] = a[i];
}
}
for (int i = 1; i <= N; i++)
{
cout << output[i] << endl;
}
return 0;
}