Description
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。
Output
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
Sample Output
6
思路:
状态压缩dp。dp[i][j][k]表示第i行在上一行状态为j,上上行状态为k时的最大值。
#include <iostream>
#include <stdio.h>
using namespace std;
const int MAXN = 101;
const int MAXM = 11;
const int MAXS = 61;
char a[MAXN][MAXM];
int dp[MAXN][MAXS][MAXS];
int vst[MAXS];
int num[MAXS];
int rstate[MAXN];
int count = 0, n = 0, m = 0;
int getNum(int i)
{
int ret = 0;
while(i)
{
i &= (i - 1);
ret++;
}
return ret;
}
void init()
{
count = 0;
for (int i = 0; i < (1 << m); ++i)
{
if (!(i & (i << 1)) && !(i & (i << 2)))
{
vst[count] = i;
num[count] = getNum(i);
count++;
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; ++i)
{
rstate[i] = 0;
scanf("%s", a[i]);
for (int j = 0; j < m; ++j)
{
if ('P' == a[i][j])
{
rstate[i] += (1 << (m - j - 1));
}
}
}
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < MAXS; ++j)
{
for (int k = 0; k < MAXS; ++k)
{
dp[i][j][k] = -1;
}
}
}
init();
for (int i = 0; i < count; ++i)
{
if (!(vst[i] & (~rstate[0])))
{
dp[0][i][0] = num[i];
}
}
for (int i = 1; i < n; ++i)
{
for (int j = 0; j < count; ++j)// state of row i-1
{
if ((~rstate[i]) & vst[j])
{
continue;
}
for (int k = 0; k < count; ++k)//state of row i-2
{
if ((~rstate[i-1]) & vst[k])
{
continue;
}
if (vst[j] & vst[k])
{
continue;
}
for (int t = 0; t < count; ++t)//state of row i-3
{
if (vst[j] & vst[t])
{
continue;
}
if (-1 == dp[i-1][k][t])
{
continue;
}
dp[i][j][k] = max(dp[i][j][k], dp[i-1][k][t] + num[j]);
}
}
}
}
int ret = 0;
for (int i = 0; i < count; ++i)
{
for (int j = 0; j < count; ++j)
{
ret = max(ret, dp[n-1][i][j]);
}
}
printf("%d\n", ret);
return 0;
}