【Auxiliary FAS】《Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision》

在这里插入图片描述

CVPR-2018



1、Background and Motivation

人脸识别应用越来越广泛, face anti-spoofing is vital to ensure that face recognition systems are robust to PA and safe to use.

传统的人脸活体检测基于 texture-based + machine learning

基于深度学习的活检通常 formulate as a binary classification problem,泛化性能比较弱,不足以应付 the different
levels of image degradation, namely spoof patterns

假也很多种形式,真假界限模糊,决策过程不能简单的非黑即白——without explanation or rationale for the decision

在这里插入图片描述

本文作者采用的是 auxiliary supervision 而不是 binary supervision,结合深度图和 rPPG 信号,来辅助决策活检最终的结果

2、Related Work

  • Texture-based Methods
  • Temporal-based Methods
    Haralick features, motion mag, and optical flow
  • Remote Photoplethysmography (rPPG)
    Remote photoplethysmography (rPPG) is the technique to track vital signals, such as heart rate,without any contact with human skin

基于rPPG的人脸活体检测综述
在这里插入图片描述

3、Advantages / Contributions

  • 用深度图和 rPPG 同时辅助监督来做人脸活体检测,采用 CNN + RNN 的结构,兼顾空间和时序信息
    ( a novel CNN-RNN architecture for end-to-end learning the depth map and rPPG signal.)
  • 公开 Spoof in the Wild Database (SiW) 数据集

4、Method

在这里插入图片描述

CNN + RNN,depth + rPPG

更细节的图示

在这里插入图片描述

(1)Depth Map Supervision

pixel-wise supervision

3D mask 的标签来自

Jourabloo A, Liu X. Pose-invariant face alignment via CNN-based dense 3D model fitting[J]. International Journal of Computer Vision, 2017, 124: 187-203.
在这里插入图片描述

Liu Y, Jourabloo A, Ren W, et al. Dense face alignment[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. 2017: 1619-1628.
在这里插入图片描述

在这里插入图片描述

真人脸有标签,假人脸标签 depth 全部置为 0


RNN 的输入之一 3D shape S S S 也是该方法计算得到,深度图监督信息根据 S S S 计算得出来的

在这里插入图片描述

(2)rPPG Supervision

sequence-wise supervision,rPPG 信号监督

rPPG 信号的监督信息计算方法来自,输入 video 提取即可

De Haan G, Jeanne V. Robust pulse rate from chrominance-based rPPG[J]. IEEE transactions on biomedical engineering, 2013, 60(10): 2878-2886.
在这里插入图片描述

上述方法提取出来的 rPPG 信号有如下缺点

  • sensitive to pose and expression variation、illumination change、
  • not be sufficiently distinguishable to signals of live videos

作者用 RNN 网络来学 rPPG 信号,现在标签都不太准确怎么办?

作者采用的是 pseudo-rPPG signal

作者假设同一个人各种 poses, illuminations, expressions (PIE) 情况下的 rPPG和正常情况下 一致

the same subject under different PIE conditions have the same ground truth rPPG signal.

理由:输入 video 的那短暂时间内,心跳频率相似,不太受环境和姿态的影响

since the heart beat is similar for the videos of the same subject that are captured in a short span of time (< 5 minutes).

由此一来,我们可以用正常 PIE 下人脸的 rPPG 信号作为标签,来监督各类 PIE 情况,提升网络对 PIE 的鲁棒性同时,通过
《Robust pulse rate from chrominance-based rPPG》 方法计算得到的标签也更真实可信(最理想情况下计算得到的最准)

大白话说,不论什么 PIE,我用正常 PIE 下计算得到的 rPPG 信号作为监督信号用于 RNN 网络训练

在这里插入图片描述
真人脸有 rPPG 信号,假人脸 rPPG 信号为 0

(3)Network Architecture

在这里插入图片描述

CNN 仅用深度信息监督

RNN 用 rPPG 信号监督,RNN 的输入有深度图,特征图和

first stream only updates the weights of the CNN part, the back propagation of the second stream updates the weights of both CNN and RNN parts in an end-to-end manner.

CNN 优化函数

在这里插入图片描述

I I I 是输入图片(256 x 256), D D D 是深度图标签, N d N_d Nd 是 the number of training images

RNN 优化函数

在这里插入图片描述

F F F 是 CNN 的特征图(32 x 32)——frontalized feature map

f f f 是 rPPG 监督信号

N s N_s Ns is the number of sequences,rPPG 信号的维度

(4)Non-rigid Registration Layer

看看具体的细节

在这里插入图片描述
输入 T T T D ^ \hat{D} D^ S S S,输出 F F F

做的是 face alignment,人脸对齐

V V V 的计算方式

在这里插入图片描述

threshold 被配置为了 0.1, D ^ \hat{D} D^ 是 CNN 预测的深度图

U U U T T T V V V 点乘

输出结果 frontalized image F,用于后续 rPPG 的预测

还是比较复杂的

(5)FAS score

在这里插入图片描述

λ = 0.015 \lambda = 0.015 λ=0.015

比较合理,计算出来的是二范数的加权得分

5、Experiments

TensorFlow 实现

(1)Datasets and Metrics

  • SiW
  • Oulu
  • CASIA-MFSD
  • Replay-Attack

APCER,BPCER,ACER,HTER,FRR,FAR

SiW 是作者提出的

在这里插入图片描述

在这里插入图片描述

(2)Advantage of proposed architecture

在这里插入图片描述

model 1 是仅有 CNN

model 2,CNN + Depth 监督,提点明显

model3,CNN + RNN without the non-rigid registration layer,性能下降了

model4,作者的方法,效果最好,体现了人脸对齐的重要性

(3)Advantage of longer sequences

在这里插入图片描述

rPPG 信号的维度,作者权衡速度和精度选择了 N f = 5 N_f = 5 Nf=5,输入尺寸 256 x 256

rPPG 曲线每个横坐标,表示输入一张图片,OMG

(4)Intra Testing

在这里插入图片描述
作者的方法真人错判为假体的概率比较低,BPCER

假体当成真人的概率没有做到很突出,APCER

平均下来 ACER 比较低,4 种测试方式下都最低

看看在自己的数据集上的表现

在这里插入图片描述

(5)Cross Testing

train in SiW, and test on all protocols of Oulu

ranked sixth,不是 SOTA

在下面两个数据集上做泛化性实验,做到了 SOTA
在这里插入图片描述

(6)Visualization and Analysis

在这里插入图片描述
在这里插入图片描述

翻车的例子

在这里插入图片描述

6、Conclusion(own) / Future work

  • poses, illuminations, expressions (PIE)
  • CNN + RNN,depth + rPPG 监督
  • 提出了 SiW 数据集
  • Binary or Auxiliary Supervision(1)
    在这里插入图片描述
  • 深度图的监督标签面对抠图攻击,不知道如何,标签全部置为 0 肯定不合适
  • 基于算法的结果当标签,然后再训练设计的网络,标签质量打个问号
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值