python最小二乘函数leastsq拟合数据以及root求解方程组

该博客介绍了如何使用Python的`scipy.optimize.leastsq`函数进行最小二乘拟合,以sigmoid变换拟合数据点,并展示了如何利用`root`求解非线性方程组。通过示例代码,展示了如何实现这两个功能,包括数据点的绘制和拟合曲线的展示。
摘要由CSDN通过智能技术生成

python最小二乘函数leastsq拟合数据以及root求解方程组

1. leastsq

需求将下面这些点分布拟合,找到相似的函数,使用sigmoid变换来拟合1 - a / (1 + np.exp(b*x + c))
在这里插入图片描述

2. root求解方程组
import numpy as np
from scipy.optimize import leastsq

X = np.array([0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1])
Y = np.array([1, 0.9, 0.7, 0.5, 0.3, 0.2, 0.1, 0.07, 0.05, 0.03, 0.01, 0.009,0.007, 0.005,0.003, 0.001, 0.0009, 0.0007, 0.0005, 0])



def func(p, x):
    a, b, c = p
    return 1 - a / (1 + np.exp(b*x + c))


def error(p, x, y):
    return func(p, x) - y  # x、y都是列表,故返回值也是个列表


p = [1, 2, 1]
Para = leastsq(error, p, args=(X, Y))  # 把error函数中除了p以外的参数打包到args中
a, b, c = Para[0]
print("a=", a, b, c)

plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color="red", label="Sample Point", linewidth=3)  # 画样本点
x = np.linspace(0, 1, 100)
y = 1 - a / (1 + np.exp(b*x + c))
plt.plot(x, y, color="orange", label="Fitting Curve", linewidth=2)  # 画拟合曲线
plt.legend()
plt.show()

在这里插入图片描述

from scipy.optimize import root


## 1、求解f(x)=2*sin(x)-x+1
def fun(x):
    return 2 * np.sin(x) - x + 1


res = root(fun, 1)
print(res.x)  # [2.38006127]


## 3、求解非线性方程组
def f3(p):
    x, y, z = p
    return np.array([2 * x ** 2 + 3 * y - 3 * z ** 3 - 7,
                     x + 4 * y ** 2 + 8 * z - 10,
                     x - 2 * y ** 3 - 2 * z ** 2 + 1])


sol3_root = root(f3, [0, 0, 0])
print(sol3_root)
print(sol3_root.x)  # [1.52964909 0.973546   0.58489796]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BRYTLEVSON

打赏的都是天使,创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值