Dreaming of Freedom

该编程问题探讨了在n个程序员和m种算法中,通过投票选出最受欢迎算法的情况。当n=1或m=1时,结果确定。若m>=n,则无法只剩一种算法。主要逻辑在于检查n是否有小于m的质因数,若有,则选拔无法结束。代码实现中包括特殊情况处理和时间复杂度优化。
摘要由CSDN通过智能技术生成

题目:

 

 

题意解析:

n 个程序员要在 m 个算法里选出最受欢迎的算法,每轮投票每个程序员都会在剩下的算法中选择一个。

在第一轮投票前,m 种算法都可以选择;每轮投票后,只保留有最多票数的算法;只剩下一种算法时,选拔结束。请判断无论怎样投票选拔都会结束吗?

题解:

(1)特殊情况的判断n==1||m==1的时候,结果确定是“YES”。再一个就是m>=n的时候,是没有只剩下一种算法的可能的,结果确定是“NO”。

(2)普通情况,(基本判断,但是这样判断会超时,后面会说优化)就是从2到m的范围内,判断n%i==0。为什么要这么判断?如果n%i=0的话,程序员可以一直只给i个人投票,到最后就会剩下i个人,就不是只有一个人!!

(3)时间优化处理:i<=n/i,为什么要这样判断?这里是判断一下n 能不能分解出一个小于 m 的质因数(除了1和它自身外,不能被其他自然数整除的数)。

代码:

#include<bits/stdc++.h>
#include<cmath>
using namespace std;
long long int t;
int main() {
	cin>>t;
	while(t--){
		long long int n,m;
		cin>>n>>m;
		int sign=0;
		if(n==1||m==1){
			cout<<"YES"<<endl;
			continue;
		}
		if(m>=n){
			cout<<"NO"<<endl;
			continue;
		}
		for(int i=2;i<=m&&i<=n/i;i++){
			if(n%i==0){
				sign=1;
				cout<<"NO"<<endl;
				break;
			}
		}
		if(sign==0){
			cout<<"YES"<<endl;
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值